Chen-like Inequalities for Submanifolds in Kähler Manifolds Admitting Semi-Symmetric Non-Metric Connections

被引:0
|
作者
Mihai, Ion [1 ]
Olteanu, Andreea [2 ]
机构
[1] Univ Bucharest, Dept Math, Bucharest 010014, Romania
[2] Univ Agron Sci & Vet Med Bucharest, Dept Math Phys & Terr Measurements, Bucharest 011464, Romania
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 10期
关键词
K & auml; hler manifold; complex space form; submanifolds; mean curvature; Ricci curvature; semi-symmetric connection; non-metric connection; Chen inequality; Euler inequality; SPACE-FORMS; SLANT SUBMANIFOLDS; SHAPE OPERATOR; CURVATURE;
D O I
10.3390/sym16101401
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The geometry of submanifolds in K & auml;hler manifolds is an important research topic. In the present paper, we study submanifolds in complex space forms admitting a semi-symmetric non-metric connection. We prove the Chen-Ricci inequality, Chen basic inequality, and a generalized Euler inequality for such submanifolds. These inequalities provide estimations of the mean curvature (the main extrinsic invariants) in terms of intrinsic invariants: Ricci curvature, the Chen invariant, and scalar curvature. In the proofs, we use the sectional curvature of a semi-symmetric, non-metric connection recently defined by A. Mihai and the first author, as well as its properties.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] INEQUALITIES FOR SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD OF NEARLY QUASI-CONSTANT CURVATURE WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
    Zhang, Pan
    Pan, Xulin
    Zhang, Liang
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2015, 56 (02): : 1 - 19
  • [42] η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection
    Dogru, Yusuf
    AIMS MATHEMATICS, 2023, 8 (05): : 11943 - 11952
  • [43] HYPERBOLIC KENMOTSU MANIFOLD ADMITTING A NEW TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION
    Singh, Abhishek
    Das, Lovejoy S.
    Pankaj
    Patel, Shraddha
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (01): : 123 - 139
  • [44] CHEN INEQUALITIES FOR SUBMANIFOLDS OF A LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION
    Ozgur, Cihan
    Murathan, Cengizhan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (01): : 239 - 253
  • [45] CERTAIN CURVATURE CONDITIONS ON N(K)-CONTACT METRIC MANIFOLDS WITH RESPECT TO SEMI-SYMMETRIC NON-METRIC CONNECTION
    Tripathi, Gajendra Nath
    Rastogi, Rati
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2020, 19 (1-2): : 69 - 80
  • [46] Semi-Riemannian submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection
    Yucesan, Ahmet
    Yasar, Erol
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 781 - 793
  • [47] SEMI-SYMMETRIC METRIC CONNECTIONS IN ALMOST CONTACT MANIFOLDS
    SHARFUDDIN, A
    HUSAIN, SI
    TENSOR, 1976, 30 (02): : 133 - 139
  • [48] GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
    Jin, Dae Ho
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (02): : 47 - 68
  • [49] On some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection
    Dogru, Yusuf
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 85 - 100
  • [50] Chen's inequalities for submanifolds in (\g=k\,\g=m\)-contact space form with a semi-symmetric metric connection
    Ahmad, Asif
    He Guoqing
    Tang Wanxiao
    Zhao Peibiao
    OPEN MATHEMATICS, 2018, 16 : 380 - 391