Novel hierarchical α structure enhanced strength-ductility synergy in metastable (3 titanium alloy

被引:0
|
作者
Yang, Hao [1 ]
Zhu, Mingxiang [1 ]
Chen, Nana [2 ]
Xie, Sisi [1 ]
Yu, Yonghao [1 ]
Wang, Guodong [1 ]
Wang, Chuanyun [1 ]
Kou, Hongchao [1 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Key Lab Archaeol Explorat & Cultural Heritage Cons, Minist Educ, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Metastable (3 titanium alloys; Hierarchical structure; Mechanical properties; Back-stress strengthening; Deformation mechanisms; MECHANICAL-PROPERTIES; VARIANT SELECTION; MICROSTRUCTURAL EVOLUTION; TENSILE PROPERTIES; GRAIN-BOUNDARIES; BETA; PHASE; BEHAVIOR; PRECIPITATION; DEFORMATION;
D O I
10.1016/j.msea.2025.147877
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heterogeneous structures and hierarchical structures are effective methods for overcoming strength-ductility trade-off in metals. In current study, a heterogeneous (3 structure, containing heterogeneity of grain size and defects (including dislocations and low-angle grain boundaries), was obtained through hot rolling and partial recrystallization processes in metastable (3 titanium alloy Ti-7Mo-3Nb-3Cr-3Al. On this basis, a novel hierarchical alpha structure was constructed through a simple aging process. The hierarchical structure couples the heterogeneous (3 lamella structure with a combination of small and large alpha phase, including alternately distributed micron-sized phases (alpha WGBs, alpha l) and submicron-sized alpha s phases in equiaxed grain regions, and submicron-sized phases (alpha l, alpha p) and nanosized alpha s phases in deformed grain regions. An excellent strength-ductility synergy was achieved in the designed hierarchical alpha structure, with a yield strength of 1360 MPa, tensile strength of 1430 MPa, and an elongation of 8.1 % at room temperature. The hierarchical alpha structure facilitates strain distribution and transfer during deformation, and could deform compatibly with the (3 matrix. Simultaneously, the grain boundary Widmansta<spacing diaeresis>tten alpha WGBs phase reinforces grain boundary regions prone to failure, ensuring the alloy retains plasticity while enhancing strength. Back stress strengthening has been proven to be the most significant factor that enhance strength. This study provides a new simple approach for constructing hierarchical structure in metastable (3 titanium alloys, offering meaningful insights into achieving strength-ductility synergy.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Achieving gradient heterogeneous structure in Mg alloy for excellent strength-ductility synergy
    Han, Jing
    Sun, Jiapeng
    Song, Yuanming
    Xu, Bingqian
    Yang, Zhenquan
    Xu, Songsong
    Han, Ying
    Wu, Guosong
    Zhao, Jiyun
    JOURNAL OF MAGNESIUM AND ALLOYS, 2023, 11 (07) : 2392 - 2403
  • [12] Achieving gradient heterogeneous structure in Mg alloy for excellent strength-ductility synergy
    Jing Han
    Jiapeng Sun
    Yuanming Song
    Bingqian Xu
    Zhenquan Yang
    Songsong Xu
    Ying Han
    Guosong Wu
    Jiyun Zhao
    Journal of Magnesium and Alloys, 2023, 11 (07) : 2392 - 2403
  • [13] Enhancing strength-ductility synergy in metastable ,β-Ti alloys through ,β-subgrains-mediated hierarchical α-precipitation
    Xing, Yujie
    Zhao, Dingxuan
    Lei, Jinwen
    Mao, Youchuan
    Zheng, Zehua
    Chen, Wei
    Zhang, Jinyu
    Liu, Xianghong
    Sun, Jun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 218 : 211 - 226
  • [14] Superior strength-ductility synergy by microstructural heterogeneities in pure titanium
    Wang, Mingsai
    Guo, Fengjiao
    He, Qiong
    Su, Wuli
    Ran, Hao
    Cheng, Qian
    Kim, Hyoung Seop
    Wang, Qingyuan
    Huang, Chongxiang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 883
  • [15] On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy
    He, Junyang
    Makineni, Surendra Kumar
    Lu, Wenjun
    Shang, Yuanyuan
    Lu, Zhaoping
    Li, Zhiming
    Gault, Baptiste
    SCRIPTA MATERIALIA, 2020, 175 : 1 - 6
  • [16] Achieving synergy between strength and ductility in metastable (3-titanium alloy through a novel multi-morphological microstructure
    Fan, Yiduo
    Tan, Changsheng
    Fan, Haonan
    Li, Qiang
    Bao, Tingting
    Wang, Xueliang
    Zhang, Guojun
    Lu, Hengping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [17] Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy
    Liu, Liyuan
    Zhang, Yang
    Li, Junpeng
    Fan, Mingyu
    Wang, Xiyu
    Wu, Guangchuan
    Yang, Zhongbo
    Luan, Junhua
    Jiao, Zengbao
    Liu, Chain Tsuan
    Liaw, Peter K.
    Zhang, Zhongwu
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 153
  • [18] Enhanced strength-ductility synergy in medium entropy alloy via phase selective precipitation
    Cai, Weijin
    Long, Qiang
    Lu, Shenghan
    Wang, Kang
    He, Junyang
    Zhao, Shiteng
    Xiong, Zhiping
    Hu, Jun
    Xia, Wenzhen
    Baker, Ian
    Gan, Kefu
    Song, Min
    Wang, Zhangwei
    INTERNATIONAL JOURNAL OF PLASTICITY, 2025, 184
  • [19] Enhancement of strength-ductility synergy in high-strength metastable fl-titanium alloys through boron microalloying
    Zhao, Dingxuan
    Li, Keer
    Liu, Jixiong
    Li, Rui
    Chen, Wei
    Zhang, Jinyu
    Wang, Xiaoxiang
    Wang, Jian
    Sun, Jun
    COMPOSITES PART B-ENGINEERING, 2024, 279
  • [20] Improving strength-ductility synergy in a TRIP metastable b-Zr alloy containing heterogeneous a precipitates
    Liao, Zhongni
    Fu, Wei
    Liu, Tao
    Sun, Qi
    Wang, TaoTao
    Zhang, Lizhai
    Jing, Ran
    Ai, Tao Tao
    Zhang, Jinyu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 5956 - 5970