A smaller upper bound for the list injective chromatic number of planar graphs

被引:0
|
作者
Chen, Hongyu [1 ]
Zhang, Li [2 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 01期
关键词
list injective coloring; maximum degree; girth; planar graph; GIRTH;
D O I
10.3934/math.2025014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An injective vertex coloring of a graph G is a coloring where no two vertices that share a common neighbor are assigned the same color. If for any list L of permissible colors with size k assigned to the vertices V ( G ) of a graph G , there exists an injective coloring phi in which phi ( v ) E L ( v ) for each vertex v E V ( G ), then G is said to be injectively k-choosable. The notation chi l i ( G ) represents the minimum value of k such that a graph G is injectively k-choosable. In this article, for any maximum degree O , we demonstrate that chi l i ( G ) <= O + 4 if G is a planar graph with girth g >= 5 and without intersecting 5-cycles.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 50 条
  • [21] Improved upper bound for acyclic chromatic number of graphs
    Cai, Jiansheng
    Wang, Jihui
    Yu, Jiguo
    ARS COMBINATORIA, 2019, 142 : 231 - 237
  • [22] List Injective Coloring of Planar Graphs
    Li, Wen-wen
    Cai, Jian-sheng
    Yan, Gui-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (03): : 614 - 626
  • [23] UPPER BOUND OF A GRAPHS CHROMATIC NUMBER, DEPENDING ON GRAPHS DEGREE AND DENSITY
    BORODIN, OV
    KOSTOCHKA, AV
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) : 247 - 250
  • [24] A new upper bound on the acyclic chromatic indices of planar graphs
    Wang, Weifan
    Shu, Qiaojun
    Wang, Yiqiao
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 338 - 354
  • [25] Improved lower bound for the list chromatic number of graphs with no Kt minor
    Steiner, Raphael
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (06): : 1070 - 1075
  • [26] Improved Upper Bound for Generalized Acyclic Chromatic Number of Graphs
    Cai, Jian-sheng
    Zhu, Xu-ding
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 798 - 800
  • [27] Injective edge chromatic number of sparse graphs
    Zhu, Junlei
    Zhu, Hongguo
    Bu, Yuehua
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 473
  • [28] Some results on the injective chromatic number of graphs
    Chen, Min
    Hahn, Gena
    Raspaud, Andre
    Wang, Weifan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 299 - 318
  • [29] Some bounds on the injective chromatic number of graphs
    Doyon, Alain
    Hahn, Gena
    Raspaud, Andre
    DISCRETE MATHEMATICS, 2010, 310 (03) : 585 - 590
  • [30] Improved Upper Bound for Generalized Acyclic Chromatic Number of Graphs
    Jian-sheng Cai
    Xu-ding Zhu
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 798 - 800