A smaller upper bound for the list injective chromatic number of planar graphs

被引:0
|
作者
Chen, Hongyu [1 ]
Zhang, Li [2 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 01期
关键词
list injective coloring; maximum degree; girth; planar graph; GIRTH;
D O I
10.3934/math.2025014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An injective vertex coloring of a graph G is a coloring where no two vertices that share a common neighbor are assigned the same color. If for any list L of permissible colors with size k assigned to the vertices V ( G ) of a graph G , there exists an injective coloring phi in which phi ( v ) E L ( v ) for each vertex v E V ( G ), then G is said to be injectively k-choosable. The notation chi l i ( G ) represents the minimum value of k such that a graph G is injectively k-choosable. In this article, for any maximum degree O , we demonstrate that chi l i ( G ) <= O + 4 if G is a planar graph with girth g >= 5 and without intersecting 5-cycles.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 50 条
  • [1] Two smaller upper bounds of list injective chromatic number
    Bu, Yuehua
    Lu, Kai
    Yang, Sheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (02) : 373 - 388
  • [2] Two smaller upper bounds of list injective chromatic number
    Yuehua Bu
    Kai Lu
    Sheng Yang
    Journal of Combinatorial Optimization, 2015, 29 : 373 - 388
  • [3] An Upper Bound on the Chromatic Number of 2-Planar Graphs
    Karpov, Dmitri, V
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (03) : 703 - 720
  • [4] A general upper bound on the list chromatic number of locally sparse graphs
    Vu, VH
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (01): : 103 - 111
  • [5] A NEW UPPER BOUND FOR THE LIST CHROMATIC NUMBER
    BOLLOBAS, B
    HIND, HR
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 65 - 75
  • [6] PRECISE UPPER BOUND FOR THE STRONG EDGE CHROMATIC NUMBER OF SPARSE PLANAR GRAPHS
    Borodin, Oleg V.
    Ivanova, Anna O.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 759 - 770
  • [7] An improved upper bound for the acyclic chromatic number of 1-planar graphs
    Yang, Wanshun
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 275 - 291
  • [8] On the injective chromatic number of graphs
    Hahn, G
    Kratochvíl, J
    Sirán, J
    Sotteau, D
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 179 - 192
  • [9] Star list chromatic number of planar subcubic graphs
    Min Chen
    André Raspaud
    Weifan Wang
    Journal of Combinatorial Optimization, 2014, 27 : 440 - 450
  • [10] Star list chromatic number of planar subcubic graphs
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (03) : 440 - 450