Amino acid substitutions in NSP6 and NSP13 of SARS-CoV-2 contribute to superior virus growth at low temperatures

被引:0
|
作者
Furusawa, Yuri [1 ,2 ]
Kiso, Maki [3 ]
Uraki, Ryuta [1 ,2 ,3 ]
Sakai-Tagawa, Yuko [2 ]
Nagai, Hiroyuki [4 ]
Koga, Michiko [4 ,5 ]
Kashima, Yukie [6 ]
Hojo, Masayuki [7 ]
Iwamoto, Noriko [8 ]
Iwatsuki-Horimoto, Kiyoko [3 ]
Ohmagari, Norio [8 ]
Suzuki, Yutaka [6 ]
Yotsuyanagi, Hiroshi [4 ,5 ]
Halfmann, Peter J. [9 ]
Kamitani, Wataru [10 ]
Yamayoshi, Seiya [1 ,2 ,3 ,11 ]
Kawaoka, Yoshihiro [1 ,2 ,3 ,9 ]
机构
[1] Natl Ctr Global Hlth & Med Res Inst, Res Ctr Global Viral Dis, Tokyo, Tokyo, Japan
[2] Univ Tokyo, Inst Med Sci, Div Virol, Tokyo, Tokyo, Japan
[3] Univ Tokyo, Pandem Preparedness Infect & Adv Res Ctr, Tokyo, Tokyo, Japan
[4] Univ Tokyo, IMSUT Hosp, Inst Med Sci, Dept Infect Dis & Appl Immunol, Tokyo, Tokyo, Japan
[5] Univ Tokyo, Inst Med Sci, Adv Clin Res Ctr, Div Infect Dis, Tokyo, Tokyo, Japan
[6] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Tokyo, Tokyo, Japan
[7] Natl Ctr Global Hlth & Med, Dept Resp Dis, Tokyo, Tokyo, Japan
[8] Natl Ctr Global Hlth & Med, Dis Control & Prevent Ctr, Tokyo, Tokyo, Japan
[9] Univ Wisconsin, Sch Vet Med, Dept Pathobiol Sci, Madison, WI 53706 USA
[10] Gunma Univ, Grad Sch Med, Dept Infect Dis & Host Def, Gunma, Japan
[11] Univ Tokyo, Inst Med Sci, Int Res Ctr Infect Dis, Tokyo, Tokyo, Japan
关键词
SARS-CoV-2; COVID-19; coronavirus;
D O I
10.1128/jvi.02217-24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In general, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates well at 37 degrees C, which is the temperature of the human lower respiratory tract, but it poorly at 30 degrees C-32 degrees C, which is the temperature of the human upper respiratory tract. The replication efficiency of SARS-CoV-2 in the upper respiratory tract may directly affect its transmissibility. In this study, an XBB.1.5 isolate showed superior replicative ability at 32 degrees C and 30 degrees C, whereas most other Omicron sub-variant isolates showed limited growth. Deep sequencing analysis demonstrated that the frequencies of viruses possessing the NSP6-S163P and NSP13-P238S substitutions increased to more than 97% during propagation of the XBB.1.5 isolate at 32 degrees C but did not reach 55% at 37 degrees C. Reverse genetics revealed that these substitutions contributed to superior virus growth in vitro at these low temperatures by improving virus genome replication. Mutant virus possessing both substitutions showed slightly higher virus titers in the upper respiratory tract of hamsters compared to the parental virus; however, transmissibility between hamsters was similar for the mutant and parental viruses. Taken together, our findings indicate that NSP6-S163P and NSP13-P238S contribute to superior virus growth at low temperatures in vitro and in the upper respiratory tract of hamsters. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates efficiently at 37 degrees C. However, the temperature of the human upper airway is 30 degrees C-32 degrees C. Therefore, the replicative ability of SARS-CoV-2 at low temperatures could influence virus replication in the upper airway and transmissibility. In this study, we assessed the growth of Omicron sub-variants at low temperatures and found that an XBB.1.5 isolate showed increased replicative ability. By deep sequencing analysis and reverse genetics, we found that amino acid changes in NSP6 and NSP13 contribute to the low-temperature growth; these changes improved RNA polymerase activity at low temperatures and enhanced virus replication in the upper airway of hamsters. Although these substitutions alone did not drastically affect virus transmissibility, in combination with other substitutions, they could affect virus replication in humans. Furthermore, since these substitutions enhance virus replication in cultured cells, they could be used to improve the production of inactivated or live attenuated vaccine virus.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities
    Corona, Angela
    Wycisk, Krzysztof
    Talarico, Carmine
    Manelfi, Candida
    Milia, Jessica
    Cannalire, Rolando
    Esposito, Francesca
    Gribbon, Philip
    Zaliani, Andrea
    Iaconis, Daniela
    Beccari, Andrea R.
    Summa, Vincenzo
    Nowotny, Marcin
    Tramontano, Enzo
    ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2022, 5 (04) : 226 - 239
  • [22] Force-Dependent Stimulation of RNA Unwinding by SARS-CoV-2 NSP13 Helicase
    Mickolajczyk, Keith J.
    Shelton, Patrick M.
    Grasso, Michael
    Cao, Xiaocong
    Warrington, Sara E.
    Aher, Amol
    Liu, Shixin
    Kapoor, Tarun M.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 93A - 93A
  • [23] SARS-CoV-2 Nsp6-Omicron causes less damage to the Drosophila heart and mouse cardiomyocytes than ancestral Nsp6
    Zhu, Jun-yi
    Lee, Jin-Gu
    Wang, Guanglei
    Duan, Jianli
    van de Leemput, Joyce
    Lee, Hangnoh
    Yang, Wendy Wenqiao
    Han, Zhe
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [24] In-Silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing
    Abdelkader, Ahmed
    Elzemrany, Amal A.
    El-Nadi, Mennatullah
    Elsabbagh, Sherif A.
    Shehata, Moustafa A.
    Eldehna, Wagdy M.
    El-Hadidi, Mohamed
    Ibrahim, Tamer M.
    VIROLOGY, 2022, 573 : 96 - 110
  • [25] Screening of FDA-approved compound library identifies potential small-molecule inhibitors of SARS-CoV-2 non-structural proteins NSP1, NSP4, NSP6 and NSP13: molecular modeling and molecular dynamics studies
    Shobana Sundar
    Lokesh Thangamani
    Shanmughavel Piramanayagam
    Chandrasekar Narayanan Rahul
    Natarajan Aiswarya
    Kanagaraj Sekar
    Jeyakumar Natarajan
    Journal of Proteins and Proteomics, 2021, 12 (3) : 161 - 175
  • [26] Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro
    Lu, Lian
    Peng, Yun
    Yao, Huiqiao
    Wang, Yanqun
    Li, Jinyu
    Yang, Yang
    Lin, Zhonghui
    ANTIVIRAL RESEARCH, 2022, 206
  • [27] SARS-CoV-2 Nsp13 helicase modulates miR-146a-mediated signaling pathways
    Lundrigan, Eryn
    Uguccioni, Spencer
    Hum, Christine
    Ahmed, Nadine
    Pezacki, John Paul
    VIROLOGY, 2025, 606
  • [28] SARS-CoV-2 nsp13 Restricts Episomal DNA Transcription without Affecting Chromosomal DNA
    Li, Aixin
    Zhang, Bei
    Zhao, Kaitao
    Yin, Zhinang
    Teng, Yan
    Zhang, Lu
    Xu, Zaichao
    Liang, Kaiwei
    Cheng, Xiaoming
    Xia, Yuchen
    JOURNAL OF VIROLOGY, 2023, 97 (07)
  • [29] Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase
    Zeng, Jingkun
    Weissmann, Florian
    Bertolin, Agustina P.
    Posse, Viktor
    Canal, Berta
    Ulferts, Rachel
    Wu, Mary
    Harvey, Ruth
    Hussain, Saira
    Milligan, Jennifer C.
    Roustan, Chloe
    Borg, Annabel
    McCoy, Laura
    Drury, Lucy S.
    Kjaer, Svend
    McCauley, John
    Howell, Michael
    Beale, Rupert
    Diffley, John F. X.
    BIOCHEMICAL JOURNAL, 2021, 478 (01) : 2405 - 2423
  • [30] Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation
    Da-Yuan Chen
    Chue Vin Chin
    Devin Kenney
    Alexander H. Tavares
    Nazimuddin Khan
    Hasahn L. Conway
    GuanQun Liu
    Manish C. Choudhary
    Hans P. Gertje
    Aoife K. O’Connell
    Scott Adams
    Darrell N. Kotton
    Alexandra Herrmann
    Armin Ensser
    John H. Connor
    Markus Bosmann
    Jonathan Z. Li
    Michaela U. Gack
    Susan C. Baker
    Robert N. Kirchdoerfer
    Yachana Kataria
    Nicholas A. Crossland
    Florian Douam
    Mohsan Saeed
    Nature, 2023, 615 : 143 - 150