Amino acid substitutions in NSP6 and NSP13 of SARS-CoV-2 contribute to superior virus growth at low temperatures

被引:0
|
作者
Furusawa, Yuri [1 ,2 ]
Kiso, Maki [3 ]
Uraki, Ryuta [1 ,2 ,3 ]
Sakai-Tagawa, Yuko [2 ]
Nagai, Hiroyuki [4 ]
Koga, Michiko [4 ,5 ]
Kashima, Yukie [6 ]
Hojo, Masayuki [7 ]
Iwamoto, Noriko [8 ]
Iwatsuki-Horimoto, Kiyoko [3 ]
Ohmagari, Norio [8 ]
Suzuki, Yutaka [6 ]
Yotsuyanagi, Hiroshi [4 ,5 ]
Halfmann, Peter J. [9 ]
Kamitani, Wataru [10 ]
Yamayoshi, Seiya [1 ,2 ,3 ,11 ]
Kawaoka, Yoshihiro [1 ,2 ,3 ,9 ]
机构
[1] Natl Ctr Global Hlth & Med Res Inst, Res Ctr Global Viral Dis, Tokyo, Tokyo, Japan
[2] Univ Tokyo, Inst Med Sci, Div Virol, Tokyo, Tokyo, Japan
[3] Univ Tokyo, Pandem Preparedness Infect & Adv Res Ctr, Tokyo, Tokyo, Japan
[4] Univ Tokyo, IMSUT Hosp, Inst Med Sci, Dept Infect Dis & Appl Immunol, Tokyo, Tokyo, Japan
[5] Univ Tokyo, Inst Med Sci, Adv Clin Res Ctr, Div Infect Dis, Tokyo, Tokyo, Japan
[6] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Tokyo, Tokyo, Japan
[7] Natl Ctr Global Hlth & Med, Dept Resp Dis, Tokyo, Tokyo, Japan
[8] Natl Ctr Global Hlth & Med, Dis Control & Prevent Ctr, Tokyo, Tokyo, Japan
[9] Univ Wisconsin, Sch Vet Med, Dept Pathobiol Sci, Madison, WI 53706 USA
[10] Gunma Univ, Grad Sch Med, Dept Infect Dis & Host Def, Gunma, Japan
[11] Univ Tokyo, Inst Med Sci, Int Res Ctr Infect Dis, Tokyo, Tokyo, Japan
关键词
SARS-CoV-2; COVID-19; coronavirus;
D O I
10.1128/jvi.02217-24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In general, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates well at 37 degrees C, which is the temperature of the human lower respiratory tract, but it poorly at 30 degrees C-32 degrees C, which is the temperature of the human upper respiratory tract. The replication efficiency of SARS-CoV-2 in the upper respiratory tract may directly affect its transmissibility. In this study, an XBB.1.5 isolate showed superior replicative ability at 32 degrees C and 30 degrees C, whereas most other Omicron sub-variant isolates showed limited growth. Deep sequencing analysis demonstrated that the frequencies of viruses possessing the NSP6-S163P and NSP13-P238S substitutions increased to more than 97% during propagation of the XBB.1.5 isolate at 32 degrees C but did not reach 55% at 37 degrees C. Reverse genetics revealed that these substitutions contributed to superior virus growth in vitro at these low temperatures by improving virus genome replication. Mutant virus possessing both substitutions showed slightly higher virus titers in the upper respiratory tract of hamsters compared to the parental virus; however, transmissibility between hamsters was similar for the mutant and parental viruses. Taken together, our findings indicate that NSP6-S163P and NSP13-P238S contribute to superior virus growth at low temperatures in vitro and in the upper respiratory tract of hamsters. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates efficiently at 37 degrees C. However, the temperature of the human upper airway is 30 degrees C-32 degrees C. Therefore, the replicative ability of SARS-CoV-2 at low temperatures could influence virus replication in the upper airway and transmissibility. In this study, we assessed the growth of Omicron sub-variants at low temperatures and found that an XBB.1.5 isolate showed increased replicative ability. By deep sequencing analysis and reverse genetics, we found that amino acid changes in NSP6 and NSP13 contribute to the low-temperature growth; these changes improved RNA polymerase activity at low temperatures and enhanced virus replication in the upper airway of hamsters. Although these substitutions alone did not drastically affect virus transmissibility, in combination with other substitutions, they could affect virus replication in humans. Furthermore, since these substitutions enhance virus replication in cultured cells, they could be used to improve the production of inactivated or live attenuated vaccine virus.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Diketo acid inhibitors of nsp13 of SARS-CoV-2 block viral replication
    Corona, Angela
    Madia, Valentina Noemi
    De Santis, Riccardo
    Manelfi, Candida
    Emmolo, Roberta
    Ialongo, Davide
    Patacchini, Elisa
    Messore, Antonella
    Amatore, Donatella
    Faggioni, Giovanni
    Artico, Marco
    Iaconis, Daniela
    Talarico, Carmine
    Di Santo, Roberto
    Lista, Florigio
    Costi, Roberta
    Tramontano, Enzo
    ANTIVIRAL RESEARCH, 2023, 217
  • [2] The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle
    Simona Ricciardi
    Andrea Maria Guarino
    Laura Giaquinto
    Elena V. Polishchuk
    Michele Santoro
    Giuseppe Di Tullio
    Cathal Wilson
    Francesco Panariello
    Vinicius C. Soares
    Suelen S. G. Dias
    Julia C. Santos
    Thiago M. L. Souza
    Giovanna Fusco
    Maurizio Viscardi
    Sergio Brandi
    Patrícia T. Bozza
    Roman S. Polishchuk
    Rossella Venditti
    Maria Antonietta De Matteis
    Nature, 2022, 606 : 761 - 768
  • [3] The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle
    Ricciardi, Simona
    Guarino, Andrea Maria
    Giaquinto, Laura
    Polishchuk, Elena, V
    Santoro, Michele
    Di Tullio, Giuseppe
    Wilson, Cathal
    Panariello, Francesco
    Soares, Vinicius C.
    Dias, Suelen S. G.
    Santos, Julia C.
    Souza, Thiago M. L.
    Fusco, Giovanna
    Viscardi, Maurizio
    Brandi, Sergio
    Bozza, Patricia T.
    Polishchuk, Roman S.
    Venditti, Rossella
    De Matteis, Maria Antonietta
    NATURE, 2022, 606 (7915) : 761 - +
  • [4] SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists
    Yuen, Chun-Kit
    Lam, Joy-Yan
    Wong, Wan-Man
    Mak, Long-Fung
    Wang, Xiaohui
    Chu, Hin
    Cai, Jian-Piao
    Jin, Dong-Yan
    To, Kelvin Kai-Wang
    Chan, Jasper Fuk-Woo
    Yuen, Kwok-Yung
    Kok, Kin-Hang
    EMERGING MICROBES & INFECTIONS, 2020, 9 (01) : 1418 - 1428
  • [5] The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2
    Bills, Cody
    Xie, Xuping
    Shi, Pei-Yong
    ANTIVIRAL RESEARCH, 2023, 213
  • [6] What a twist: structural biology of the SARS-CoV-2 helicase nsp13
    Horrell, Sam
    Martino, Sam
    Kirsten, Ferdinand
    Berta, Denes
    Santoni, Gianluca
    Thorn, Andrea
    CRYSTALLOGRAPHY REVIEWS, 2023, 29 (04) : 202 - 227
  • [7] SARS-CoV-2 nsp13 suppresses hepatitis B virus replication by targeting cccDNA transcription
    Li, Aixin
    Zhao, Kaitao
    Duan, Yurong
    Zhang, Bei
    Zheng, Yingcheng
    Zhu, Chengliang
    Chen, Qiongrong
    Liu, Wen-Bo
    Hui, Lixia
    Xia, Yuchen
    Cheng, Xiaoming
    JOURNAL OF VIROLOGY, 2024, 98 (11)
  • [8] Role of ATP in the RNA Translocation Mechanism of SARS-CoV-2 NSP13 Helicase
    Weber, Ryan
    McCullagh, Martin
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (31): : 8787 - 8796
  • [9] Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase
    Newman, Joseph A.
    Douangamath, Alice
    Yadzani, Setayesh
    Yosaatmadja, Yuliana
    Aimon, Antony
    Brandao-Neto, Jose
    Dunnett, Louise
    Gorrie-stone, Tyler
    Skyner, Rachael
    Fearon, Daren
    Schapira, Matthieu
    von Delft, Frank
    Gileadi, Opher
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] The SARS-CoV-2 proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms
    Vazquez, Christine
    Swanson, Sydnie
    Negatu, Seble
    Dittmar, Mark
    Ramage, Holly
    Cherry, Sara
    Jurado, Kellie
    JOURNAL OF IMMUNOLOGY, 2021, 206