Safety-Critical Optimal Control of Discrete-Time Non-Linear Systems via Policy Iteration-Based Q-Learning

被引:0
|
作者
Long, Lijun [1 ,2 ]
Liu, Xiaomei [1 ,2 ]
Huang, Xiaomin [1 ,2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang, Peoples R China
关键词
control barrier functions; discrete-time systems; neural networks; Q-learning; safety-critical control;
D O I
10.1002/rnc.7809
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the problem of safety-critical optimal control for discrete-time non-linear systems. A safety-critical control algorithm is developed based on Q-learning and an iterative adaptive dynamic programming, that is, policy iteration. Discrete-time control barrier functions (CBFs) are introduced into the utility function for guaranteeing safety, in which a novel definition of the safe set and its boundary with multiple discrete-time CBFs are given. Also, for discrete-time systems, by using multiple discrete-time CBFs, the safety-critical optimal control problem of multiple safety objectives is addressed. Meanwhile, safety, convergence, and stability of the developed algorithm are rigorously demonstrated. An effective method to obtain an initial safety-admissible control law is established. Also, the developed algorithm is implemented by building an actor-critic structure with neural networks. Finally, the effectiveness of the proposed algorithm is illustrated by three simulation examples.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Non-linear control based on Q-learning algorithms
    Yang, Dong
    Yin, Chang-Ming
    Chen, Huan-Wen
    Wu, Bo-Sen
    Changsha Dianli Xueyuan Xuebao/Journal of Changsha University of Electric Power, 2003, 18 (01):
  • [32] Q-learning solution for optimal consensus control of discrete-time multiagent systems using reinforcement learning
    Mu, Chaoxu
    Zhao, Qian
    Gao, Zhongke
    Sun, Changyin
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (13): : 6946 - 6967
  • [33] Optimal tracking control for discrete-time systems by model-free off-policy Q-learning approach
    Li, Jinna
    Yuan, Decheng
    Ding, Zhengtao
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 7 - 12
  • [34] FINITE-HORIZON OPTIMAL CONTROL OF DISCRETE-TIME LINEAR SYSTEMS WITH COMPLETELY UNKNOWN DYNAMICS USING Q-LEARNING
    Zhao, Jingang
    Zhang, Chi
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (03) : 1471 - 1483
  • [35] Optimal Consensus Control for Discrete-Time Systems with State Delay Using Q-learning Solution
    Zhang, Li
    Huo, Shicheng
    Zhang, Ya
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA, 2022, : 630 - 635
  • [36] Experience replay-based output feedback Q-learning scheme for optimal output tracking control of discrete-time linear systems
    Rizvi, Syed Ali Asad
    Lin, Zongli
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (12) : 1825 - 1842
  • [37] Reinforcement Q-Learning Algorithm for H∞ Tracking Control of Unknown Discrete-Time Linear Systems
    Peng, Yunjian
    Chen, Qian
    Sun, Weijie
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (11): : 4109 - 4122
  • [38] Optimal trajectory tracking for uncertain linear discrete-time systems using time-varying Q-learning
    Geiger, Maxwell
    Narayanan, Vignesh
    Jagannathan, Sarangapani
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024, 38 (07) : 2340 - 2368
  • [39] Model-free H∞ control design for unknown linear discrete-time systems via Q-learning with LMI
    Kim, J. -H.
    Lewis, F. L.
    AUTOMATICA, 2010, 46 (08) : 1320 - 1326
  • [40] Numerical adaptive learning control scheme for discrete-time non-linear systems
    Wei, Qinglai
    Liu, Derong
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (11): : 1472 - 1486