Calibre: Towards Fair and Accurate Personalized Federated Learning with Self-Supervised Learning

被引:0
|
作者
Chen, Sijia [1 ]
Su, Ningxin [1 ]
Li, Baochun [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
关键词
Personalized federated learning; self-supervised learning; model fairness; prototype learning;
D O I
10.1109/ICDCS60910.2024.00087
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of personalized federated learning, existing approaches train a global model to extract transferable representations, based on which any client could train personalized models with a limited number of data samples. Self-supervised learning is considered a promising direction as the global model it produces is generic and facilitates personalization for all clients fairly. However, when data is heterogeneous across clients, the global model trained using SSL is unable to learn high-quality personalized models. In this paper, we show that when the global model is trained with SSL without modifications, its produced representations have fuzzy class boundaries. As a result, personalized learning within each client produces models with low accuracy. In order to improve SSL towards better accuracy without sacrificing its advantage in fairness, we propose Calibre, a new personalized federated learning framework designed to calibrate SSL representations by maintaining a suitable balance between more generic and more client-specific representations. Calibre is designed based on theoretically-sound properties, and introduces (1) a client-specific prototype loss as an auxiliary training objective; and (2) an aggregation algorithm guided by such prototypes across clients. Our experimental results in an extensive array of non-i.i.d. settings show that Calibre achieves state-of-the-art performance in terms of both mean accuracy and fairness across clients.
引用
收藏
页码:891 / 901
页数:11
相关论文
共 50 条
  • [31] Identifying Personalized Functional Networks Through Self-Supervised Deep Learning
    Li, Hongming
    Fan, Yong
    BIOLOGICAL PSYCHIATRY, 2021, 89 (09) : S358 - S358
  • [32] SelfAct : Personalized Activity Recognition Based on Self-Supervised and Active Learning
    Arrotta, Luca
    Civitarese, Gabriele
    Bettini, Claudio
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, MOBIQUITOUS 2023, PT I, 2024, 593 : 375 - 391
  • [33] Self-Supervised Dialogue Learning
    Wu, Jiawei
    Wang, Xin
    Wang, William Yang
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3857 - 3867
  • [34] Self-supervised learning model
    Saga, Kazushie
    Sugasaka, Tamami
    Sekiguchi, Minoru
    Fujitsu Scientific and Technical Journal, 1993, 29 (03): : 209 - 216
  • [35] Longitudinal self-supervised learning
    Zhao, Qingyu
    Liu, Zixuan
    Adeli, Ehsan
    Pohl, Kilian M.
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [36] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [37] Quantum self-supervised learning
    Jaderberg, B.
    Anderson, L. W.
    Xie, W.
    Albanie, S.
    Kiffner, M.
    Jaksch, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (03):
  • [38] Credal Self-Supervised Learning
    Lienen, Julian
    Huellermeier, Eyke
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] Self-Supervised Learning for Electroencephalography
    Rafiei, Mohammad H.
    Gauthier, Lynne V.
    Adeli, Hojjat
    Takabi, Daniel
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1457 - 1471
  • [40] Towards Efficient and Effective Self-supervised Learning of Visual Representations
    Addepalli, Sravanti
    Bhogale, Kaushal
    Dey, Priyam
    Babu, R. Venkatesh
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 523 - 538