Demonstration of Enhancement of Tumor Intravasation by Dicarbonyl Stress Using a Microfluidic Organ-on-chip

被引:0
|
作者
Kumar, Nilesh [1 ]
Samanta, Bidita [2 ]
Km, Jyothsna [3 ]
Raghunathan, Varun [3 ]
Sen, Prosenjit [1 ,2 ]
Bhat, Ramray [2 ,4 ]
机构
[1] Indian Inst Sci, Ctr Nano Sci & Engn, Bengaluru 560012, India
[2] Indian Inst Sci, Dept Bioengn, Bengaluru 560012, India
[3] Dept Elect & Commun Engn, Bengaluru 560012, India
[4] Indian Inst Sci, Dept Dev Biol & Genet, Bengaluru 560012, India
基金
英国惠康基金;
关键词
breast cancer; disease modeling; intravasation; methylglyoxal; microfluidics; organ-on-chip; Type 2 diabetes mellitus; GLYCATION END-PRODUCTS; MOLECULAR-MECHANISMS; METHYLGLYOXAL; DYSFUNCTION; METASTASIS; MODELS; CELLS;
D O I
10.1002/smll.202405998
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated. To study the problem, a histopathology-motivated, imaging-tractable, microfluidic multi-organ-on-chip platform is constructed, that seamlessly integrates a breast tumor-like compartment: invasive MDA-MB-231 in a 3D Collagen I scaffold, and a flow-implemented vascular channel: immortalized human aortic endothelia (TeloHAEC) on laminin-rich basement membrane (lrBM). The chip showcases the complexity of intravasation, wherein tumor cells and endothelia cooperate to form anastomotic structures, which facilitate cancer cell migration into the vascular channel. Upon entry, cancer cells adhere to and flow within the vascular channel. Exposure to methylglyoxal (MG), a dicarbonyl stressor associated with diabetic circulatory milieu increases cancer cell intravasation and adhesion through the vascular channel. This can be driven by MG-induced endothelial senescence and shedding, but also by the ability of MG to degrade lrBM and pathologically cross-link Collagen I, diminishing cell-ECM adhesion. Thus, dicarbonyl stress attenuates homeostatic barriers to cancer intravasation, exacerbating metastasis.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications
    Ongaro, Alfredo E.
    Di Giuseppe, Davide
    Kermanizadeh, Ali
    Crespo, Allende Miguelez
    Mencattini, Arianna
    Ghibelli, Lina
    Mancini, Vanessa
    Wlodarczyk, Krystian L.
    Hand, Duncan P.
    Martinelli, Eugenio
    Stone, Vicki
    Howarth, Nicola
    La Carrubba, Vincenzo
    Pensabene, Virginia
    Kersaudy-Kerhoas, Maiwenn
    ANALYTICAL CHEMISTRY, 2020, 92 (09) : 6693 - 6701
  • [22] PDMS Organ-On-Chip Design and Fabrication: Strategies for Improving Fluidic Integration and Chip Robustness of Rapidly Prototyped Microfluidic In Vitro Models
    Cameron, Tiffany C.
    Randhawa, Avineet
    Grist, Samantha M.
    Bennet, Tanya
    Hua, Jessica
    Alde, Luis G.
    Caffrey, Tara M.
    Wellington, Cheryl L.
    Cheung, Karen C.
    MICROMACHINES, 2022, 13 (10)
  • [23] PIEZO1 driven tumor aggressiveness in an organ-on-chip model of colorectal cancer
    Shah, Curran A.
    Strelez, Carly R.
    Schatz, Aaron
    Jiang, Hannah
    Perez, Rachel
    Mumenthaler, Shannon M.
    CANCER RESEARCH, 2024, 84 (22)
  • [24] CREATING A MODEL FOR KIDNEY-VASCULATURE INTERACTION USING AN ORGAN-ON-CHIP DEVICE
    Menendez, Amanda Bas-Cristobal
    Du, Zhaoyu
    Korevaar, Sander
    Mora, Hector Tejeda
    Shankar, Anusha
    Lin, Hui
    Othman, Amr
    Gaio, Nikolas
    van den Bosch, Thierry
    Reinders, Marlies
    Merino, Ana
    Hoogduijn, Martin
    TRANSPLANT INTERNATIONAL, 2021, 34 : 201 - 202
  • [25] Engineering human islet organoids from iPSCs using an organ-on-chip platform
    Tao, Tingting
    Wang, Yaqing
    Chen, Wenwen
    Li, Zhongyu
    Su, Wentao
    Guo, Yaqiong
    Deng, Pengwei
    Qin, Jianhua
    LAB ON A CHIP, 2019, 19 (06) : 948 - 958
  • [26] Engineering human islet organoids from iPSCs using an organ-on-chip platform
    Tao T.
    Wang Y.
    Chen W.
    Li Z.
    Su W.
    Guo Y.
    Deng P.
    Qin J.
    Lab on a Chip, 2019, 19 (06): : 948 - 958
  • [27] Modeling Statin Pharmacokinetics and Efficacy Using the Fetal Membrane and Placenta Organ-on-Chip
    Richardson, Lauren
    Kammala, Ananthkumar
    Han, Arum
    Menon, Ramkumar
    REPRODUCTIVE SCIENCES, 2022, 29 (SUPPL 1) : 245 - 245
  • [28] Modeling Preterm Birth In Vitro Using a Feto Maternal Interface Organ-on-Chip
    Richardson, Lauren
    Kim, Sungjin
    Han, Arum
    Menon, Ramkumar
    REPRODUCTIVE SCIENCES, 2022, 29 (SUPPL 1) : 114 - 114
  • [29] Protocol for generating and analyzing organ-on-chip using human and mouse intestinal organoids
    Hensel, Inga Viktoria
    Steinhauer, Michelle
    Fairless, Richard
    Resnik-Docampo, Martin
    STAR PROTOCOLS, 2024, 5 (02):
  • [30] Retina-on-chip: engineering functional in vitro models of the human retina using organ-on-chip technology
    Gensheimer, Tarek
    Veerman, Devin
    van Oosten, Edwin M.
    Segerink, Loes
    Garanto, Alejandro
    van der Meer, Andries D.
    LAB ON A CHIP, 2025, 25 (05) : 996 - 1014