Metrical properties of Hurwitz continued fractions
被引:0
|
作者:
Bugeaud, Yann
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, UMR 7501, IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
Inst Univ France, Paris, FranceUniv Strasbourg, UMR 7501, IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
Bugeaud, Yann
[1
,2
]
Robert, Gerardo Gonzalez
论文数: 0引用数: 0
h-index: 0
机构:
La Trobe Univ, Dept Math & Phys Sci, Bendigo 3552, AustraliaUniv Strasbourg, UMR 7501, IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
Robert, Gerardo Gonzalez
[3
]
论文数: 引用数:
h-index:
机构:
Hussain, Mumtaz
[3
]
机构:
[1] Univ Strasbourg, UMR 7501, IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] Inst Univ France, Paris, France
[3] La Trobe Univ, Dept Math & Phys Sci, Bendigo 3552, Australia
Hurwitz continued fraction;
Metric number theory;
Hausdorff dimension;
HAUSDORFF DIMENSION;
COMPLEX NUMBERS;
SETS;
APPROXIMATION;
VALUES;
PROOF;
D O I:
10.1016/j.aim.2025.110208
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We develop the geometry of Hurwitz continued fractions, a major tool in understanding the approximation properties of complex numbers by ratios of Gaussian integers. Based on a thorough study of the geometric properties of Hurwitz continued fractions, among other things, we determine that the space of valid sequences is not a closed set of sequences. Additionally, we establish a comprehensive metrical theory for Hurwitz continued fractions. Let phi : N -> R->0 be any function. For any complex number z and n is an element of N, let a(n)(z) denote the nth partial quotient in the Hurwitz continued fraction of z. One of the main results of this paper is the computation of the Hausdorff dimension of the set E(phi) := {z is an element of C : |a(n)(z)| >= phi(n) for infinitely many n is an element of N}. This study is a complex analog of a well-known result of Wang and Wu (2008) [55]. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
机构:
Univ Autonoma San Luis Potosi, Phys Inst, Ave Parque Chapultepec, San Luis Potosi 78295, Mexico
Uniwersytet Jagiellonski, Fac Math & Comp Sci, PL-31007 Krakow, PolandUniv Autonoma San Luis Potosi, Phys Inst, Ave Parque Chapultepec, San Luis Potosi 78295, Mexico
Garcia-Ramos, Felipe
Robert, Gerardo Gonzalez
论文数: 0引用数: 0
h-index: 0
机构:
La Trobe Univ, Dept Math & Phys Sci, Inst Math & Phys, Bendigo, Vic 3552, AustraliaUniv Autonoma San Luis Potosi, Phys Inst, Ave Parque Chapultepec, San Luis Potosi 78295, Mexico