Organic Intercalation Induced Kinetic Enhancement of Vanadium Oxide Cathodes for Ultrahigh-Loading Aqueous Zinc-Ion Batteries

被引:0
|
作者
Song, Zhihang [1 ]
Zhao, Yi [2 ]
Zhou, Anbin [1 ]
Wang, Huirong [1 ]
Jin, Xiaoyu [1 ]
Huang, Yongxin [1 ,2 ]
Li, Li [1 ,2 ,3 ]
Wu, Feng [1 ,2 ,3 ]
Chen, Renjie [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Dept Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Technol Res Inst Jinan, Jinan 250300, Peoples R China
[3] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; polymer intercalation; vanadium-based oxides; zinc-ion batteries; PERFORMANCE; PENTOXIDE; V2O5; POLYANILINE; RICH;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vanadium-based oxides have attracted much attention because of their rich valences and adjustable structures. The high theoretical specific capacity contributed by the two-electron-transfer process (V5+/V3+) makes it an ideal cathode material for aqueous zinc-ion batteries. However, slow diffusion kinetics and poor structural stability limit the application of vanadium-based oxides. Herein, a strategy for intercalating organic matter between vanadium-based oxide layers is proposed to attain high rate performance and long cycling life. The V3O7 center dot H2O is synthesized in situ on the carbon cloth to form an open porous structure, which provides sufficient contact areas with electrolyte and facilitates zinc ion transport. On the molecular level, the added organic matter p-aminophenol (pAP) not only plays a supporting role in the V3O7 center dot H2O layer, but also shows a regulatory effect on the V5+/V4+ redox process due to the reducing functional group on pAP. The novel composite electrode with porous structure exhibits outstanding reversible specific capacity (386.7 mAh g(-1), 0.1 A g(-1)) at a high load of 6.5 mg cm(-2), and superior capacity retention of 80% at 3 A g(-1) for 2100 cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Suppressing the dissolution of vanadium by organic-inorganic hybrid for aqueous zinc-ion batteries
    Luo, Zexiang
    Liu, Zhen
    He, Hanbing
    Zhang, Zhihao
    Chen, Yong
    Peng, Chaoqun
    Zeng, Jing
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 145 : 93 - 100
  • [42] Carbon nanotubes intertwined porous vanadium oxide heterostructured microfibers as high-performance cathodes for aqueous zinc-ion batteries
    Wang, Menglian
    Nie, Kaiqi
    Wu, Haibo
    Lv, Xiaoxin
    Deng, Jiujun
    Ji, Hongbing
    APPLIED SURFACE SCIENCE, 2023, 612
  • [43] Amorphous hydrated vanadium oxide with enlarged interlayer spacing for aqueous zinc-ion batteries
    Kim, Dong-Wan (dwkim1@korea.ac.kr), 1600, Elsevier B.V. (420):
  • [44] Amorphous hydrated vanadium oxide with enlarged interlayer spacing for aqueous zinc-ion batteries
    Ju, Bobae
    Song, Hee Jo
    Yoon, Hyunseok
    Kim, Dong-Wan
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [45] Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries
    Dou, Xinyue
    Xie, Xuefang
    Liang, Shuquan
    Fang, Guozhao
    SCIENCE BULLETIN, 2024, 69 (06) : 833 - 845
  • [46] Electrochemical activation of vanadium-based cathodes in aqueous zinc-ion batteries: Advances, challenges and prospects
    Liu, Shile
    Liao, Yanxin
    Liu, Tianrui
    Chen, Lingyun
    Zhang, Qichun
    ENERGY STORAGE MATERIALS, 2024, 73
  • [47] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [48] Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability
    Wang, Xinyu
    Ma, Liwen
    Zhang, Pengchao
    Wang, Hongyu
    Li, Song
    Ji, Shijun
    Wen, Zhongsheng
    Sun, Juncai
    APPLIED SURFACE SCIENCE, 2020, 502
  • [49] Customization of Manganese Oxide Cathodes via Precise Electrochemical Lithium-Ion Intercalation for Diverse Zinc-Ion Batteries
    Zhao, Jiangqi
    Yu, Haojie
    Yang, Ruijie
    Tan, Feipeng
    Zhou, Zhan
    Yan, Weibin
    Zhang, Qingyong
    Mei, Liang
    Zhou, Jiang
    Tan, Chaoliang
    Zeng, Zhiyuan
    SMALL, 2024, 20 (38)
  • [50] Co-Intercalation of Dual Charge Carriers in Metal-Ion-Confining Layered Vanadium Oxide Nanobelts for Aqueous Zinc-Ion Batteries
    Lv, Tingting
    Zhu, Guoyin
    Dong, Shengyang
    Kong, Qingquan
    Peng, Yi
    Jiang, Shu
    Zhang, Guangxun
    Yang, Zilin
    Yang, Shengyang
    Dong, Xiaochen
    Pang, Huan
    Zhang, Yizhou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (05)