Organic Intercalation Induced Kinetic Enhancement of Vanadium Oxide Cathodes for Ultrahigh-Loading Aqueous Zinc-Ion Batteries

被引:0
|
作者
Song, Zhihang [1 ]
Zhao, Yi [2 ]
Zhou, Anbin [1 ]
Wang, Huirong [1 ]
Jin, Xiaoyu [1 ]
Huang, Yongxin [1 ,2 ]
Li, Li [1 ,2 ,3 ]
Wu, Feng [1 ,2 ,3 ]
Chen, Renjie [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Dept Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Technol Res Inst Jinan, Jinan 250300, Peoples R China
[3] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; polymer intercalation; vanadium-based oxides; zinc-ion batteries; PERFORMANCE; PENTOXIDE; V2O5; POLYANILINE; RICH;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vanadium-based oxides have attracted much attention because of their rich valences and adjustable structures. The high theoretical specific capacity contributed by the two-electron-transfer process (V5+/V3+) makes it an ideal cathode material for aqueous zinc-ion batteries. However, slow diffusion kinetics and poor structural stability limit the application of vanadium-based oxides. Herein, a strategy for intercalating organic matter between vanadium-based oxide layers is proposed to attain high rate performance and long cycling life. The V3O7 center dot H2O is synthesized in situ on the carbon cloth to form an open porous structure, which provides sufficient contact areas with electrolyte and facilitates zinc ion transport. On the molecular level, the added organic matter p-aminophenol (pAP) not only plays a supporting role in the V3O7 center dot H2O layer, but also shows a regulatory effect on the V5+/V4+ redox process due to the reducing functional group on pAP. The novel composite electrode with porous structure exhibits outstanding reversible specific capacity (386.7 mAh g(-1), 0.1 A g(-1)) at a high load of 6.5 mg cm(-2), and superior capacity retention of 80% at 3 A g(-1) for 2100 cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Organic Intercalation Induced Kinetic Enhancement of Vanadium Oxide Cathodes for Ultrahigh-Loading Aqueous Zinc-Ion Batteries
    Song, Zhihang
    Zhao, Yi
    Zhou, Anbin
    Wang, Huirong
    Jin, Xiaoyu
    Huang, Yongxin
    Li, Li
    Wu, Feng
    Chen, Renjie
    SMALL, 2023, 20 (01)
  • [2] Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes
    Wang, Lulu
    Huang, Kuo-Wei
    Chen, Jitao
    Zheng, Junrong
    SCIENCE ADVANCES, 2019, 5 (10)
  • [3] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Min Chen
    Shu-Chao Zhang
    Zheng-Guang Zou
    Sheng-Lin Zhong
    Wen-Qin Ling
    Jing Geng
    Fang-An Liang
    Xiao-Xiao Peng
    Yang Gao
    Fa-Gang Yu
    RareMetals, 2023, 42 (09) : 2868 - 2905
  • [4] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Chen, Min
    Zhang, Shu-Chao
    Zou, Zheng-Guang
    Zhong, Sheng-Lin
    Ling, Wen-Qin
    Geng, Jing
    Liang, Fang-An
    Peng, Xiao-Xiao
    Gao, Yang
    Yu, Fa-Gang
    RARE METALS, 2023, 42 (09) : 2868 - 2905
  • [5] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Min Chen
    Shu-Chao Zhang
    Zheng-Guang Zou
    Sheng-Lin Zhong
    Wen-Qin Ling
    Jing Geng
    Fang-An Liang
    Xiao-Xiao Peng
    Yang Gao
    Fa-Gang Yu
    Rare Metals, 2023, 42 : 2868 - 2905
  • [6] Hydrophobic interface induced by Fluorine doping enhances vanadium oxide cathodes for aqueous Zinc-Ion batteries
    Deng, Shiyao
    Yan, Xuemin
    Jiang, Yu
    Li, Aixin
    Zhang, Ruijie
    Qu, Yongheng
    Xie, Zhizhong
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [7] Recent Progresses on Vanadium Sulfide Cathodes for Aqueous Zinc-Ion Batteries
    Hu, Enze
    Li, Huifang
    Zhang, Yizhou
    Wang, Xiaojun
    Liu, Zhiming
    ENERGIES, 2023, 16 (02)
  • [8] Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries
    Li, Jianwei
    Luo, Ningjing
    Wan, Feng
    Zhao, Siyu
    Li, Zhuangnan
    Li, Wenyao
    Guo, Jian
    Shearing, Paul R.
    Brett, Dan J. L.
    Carmalt, Claire J.
    Chai, Guoliang
    He, Guanjie
    Parkin, Ivan P.
    NANOSCALE, 2020, 12 (40) : 20638 - 20648
  • [9] Vanadium Oxide-Conducting Polymers Composite Cathodes for Aqueous Zinc-Ion Batteries: Interfacial Design and Enhancement of Electrochemical Performance
    Tolstopyatova, Elena G.
    Kamenskii, Mikhail A.
    Kondratiev, Veniamin V.
    ENERGIES, 2022, 15 (23)
  • [10] Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries
    Zhang, Yaru
    Chen, Aibing
    Sun, Jie
    JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 655 - 667