Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds

被引:0
|
作者
Siddiqui, Aliya Naaz [1 ]
Khan, Meraj Ali [2 ]
Ishan, Amira [3 ]
机构
[1] Galgotias Univ, Sch Basic Sci, Div Math, Greater Noida 203201, Uttar Pradesh, India
[2] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB-65892, Riyadh 11566, Saudi Arabia
[3] Taif Univ, Coll Sci, Dept Math, Taif 21944, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 10期
关键词
statistical manifolds; geometric inequality; generic submanifolds; delta-invariant; ANTI-HOLOMORPHIC SUBMANIFOLDS; 2 OPTIMAL INEQUALITIES;
D O I
10.3934/math.20241416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chen (1993) developed the theory of 8-invariants to establish novel necessary conditions for a Riemannian manifold to allow a minimal isometric immersion into Euclidean space. Later, Siddiqui et al. (2024) derived optimal inequalities involving the CR 8-invariant for a generic statistical submanifold in a holomorphic statistical manifold of constant holomorphic sectional curvature. In this work, we extend the study of such optimal inequality to the contact CR 8-invariant on contact CRsubmanifolds in Sasakian statistical manifolds of constant & ccedil;b-sectional curvature. This paper concludes with a summary and final remarks.
引用
收藏
页码:29220 / 29234
页数:15
相关论文
共 50 条
  • [41] Invariant submanifolds of contact (κ, μ)-manifolds
    Cappelletti Montano, Beniamino
    Di Terlizzi, Luigia
    Tripathi, Mukut Mani
    GLASGOW MATHEMATICAL JOURNAL, 2008, 50 : 499 - 507
  • [42] Weak Quasi-Contact Metric Manifolds and New Characteristics of K-Contact and Sasakian Manifolds
    Rovenski, Vladimir
    MATHEMATICS, 2024, 12 (20)
  • [43] Some results on K - contact and Trans-Sasakian Manifolds
    Channabasappa, Bagewadi
    Basavarajappa, N. S.
    Prakasha, D. G.
    Venkatesha
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2008, 1 (02): : 21 - 31
  • [45] ON SOME CLASSES OF INVARIANT SUBMANIFOLDS OF LORENTZIAN PARA-SASAKIAN MANIFOLDS
    Chand, De Uday
    Samui, Srimayee
    TAMKANG JOURNAL OF MATHEMATICS, 2016, 47 (02): : 207 - 220
  • [46] Conformal Anti-Invariant Riemannian Maps from or To Sasakian Manifolds
    Zaidi, Adeeba
    Shanker, Gauree
    Yadav, Ankit
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (04) : 1518 - 1527
  • [47] SEMI-INVARIANT ξ⊥-SUBMANIFOLDS OF GENERALIZED QUASI-SASAKIAN MANIFOLDS
    Calin, Constantin
    Crasmareanu, Mircea
    Munteanu, Marian Ioan
    Saltarelli, Vincenzo
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2053 - 2062
  • [48] Clairaut Anti-invariant Submersions from Sasakian and Kenmotsu Manifolds
    Hakan Mete Taṣtan
    Sibel Gerdan
    Mediterranean Journal of Mathematics, 2017, 14
  • [49] Gradient Estimates for the CR Heat Equation on Closed Sasakian Manifolds
    Zhao, Biqiang
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
  • [50] Conformal Anti-Invariant Riemannian Maps from or To Sasakian Manifolds
    Adeeba Zaidi
    Gauree Shanker
    Ankit Yadav
    Lobachevskii Journal of Mathematics, 2023, 44 : 1518 - 1527