Scaling limit of random plane quadrangulations with a simple boundary, via restriction

被引:0
|
作者
Bettinelli, Jeremie [1 ]
Curien, Nicolas [2 ,3 ]
Fredes, Luis [4 ]
Sepulveda, Avelio [5 ]
机构
[1] Inst Polytech Paris, CNRS, Ecole Polytech, LIX, Palaiseau, France
[2] Univ Paris Saclay, Orsay, France
[3] Inst Univ France, Orsay, France
[4] Univ Bordeaux, CNRS, Bordeaux INP, IMB, Talence, France
[5] Univ Chile, Ctr Modelamiento Matemat, UMI CNRS 2807, AFB170001,Beauchef 851, Santiago, Chile
基金
欧洲研究理事会;
关键词
Plane maps; Brownian disk; Quadrangulation; Scaling limit; Simple boundary; CONVERGENCE; MAPS; WALK;
D O I
10.1214/23-AIHP1437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a sequence / (pn) of even positive integers with pn similar to 2 alpha 2n for some alpha is an element of (0, infinity). Then, for the Gromov-Hausdorff topology, a quadrangulation with a simple boundary uniformly sampled among those with n inner faces and boundary length pn weakly converges, in the usual scaling n-1/4, toward the Brownian disk of perimeter 3 alpha. Our method consists in seeing a uniform quadrangulation with a simple boundary as a conditioned version of a model of maps for which the Gromov-Hausdorff scaling limit is known. We then explain how classical techniques of unconditionning can be used in this setting of random maps.
引用
收藏
页码:213 / 231
页数:19
相关论文
共 50 条