The low-frequency flattening of the radio spectrum of giant H II regions in M 101

被引:0
|
作者
Gajovic, L. [1 ]
Heesen, V. [1 ]
Brueggen, M. [1 ]
Edler, H. W. [1 ,2 ]
Adebahr, B. [2 ,3 ]
Pasini, T. [4 ]
de Gasperin, F. [4 ]
Basu, A. [5 ,6 ]
Wezgowiec, M. [7 ]
Horellou, C. [8 ]
Bomans, D. J. [2 ]
Denes, H. [9 ]
Vohl, D. [2 ,10 ]
机构
[1] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany
[2] Netherlands Inst Radio Astron, ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands
[3] Ruhr Univ Bochum, Fac Phys & Astron, Astron Inst AIRUB, Univ Str 150, D-44780 Bochum, Germany
[4] INAF Ist Radioastron, Via P Gobetti 101, I-40129 Bologna, Italy
[5] Thuringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany
[6] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany
[7] Obserwatorium Astron Uniwersytetu Jagiellonskiego, Ul Orla 171, PL-30244 Krakow, Poland
[8] Chalmers Univ Technol, Onsala Space Observ, SE-43992 Onsala, Sweden
[9] Yachay Tech Univ, Sch Phys Sci & Nanotechnol, Hacienda San Jose S-N, Urcuqui 100119, Ecuador
[10] Univ Amsterdam, Anton Pannekoek Inst Astron, POB 94249, NL-1090 GE Amsterdam, Netherlands
基金
爱尔兰科学基金会; 英国科学技术设施理事会; 欧洲研究理事会;
关键词
radiation mechanisms: general; H <sc>II</sc> regions; galaxies: ISM; galaxies: individual: M 101; radio continuum: galaxies; COSMIC-RAY TRANSPORT; STAR-FORMATION RATE; CONTINUUM OBSERVATIONS; ENERGY-DISTRIBUTION; SPIRAL GALAXIES; IONIZED-GAS; CHANG-ES; ARP; 220; LOFAR; EMISSION;
D O I
10.1051/0004-6361/202453003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. In galaxies, the flattening of the spectrum at low radio frequencies below 300 MHz has been the subject of some debate. A turnover at low frequencies could be caused by multiple physical processes, which can yield new insights into the properties of the ionised gas in the interstellar medium. Aims. We investigate the existence and nature of the low-frequency turnover in the H II regions of M 101. Methods. We study the nearby galaxy M 101 using the LOw Frequency ARray (LOFAR) at frequencies of 54 and 144 MHz, Apertif at 1370 MHz, and published combined map from the Very Large Array (VLA) and Effelesberg telescope at 4850 MHz. Results. The spectral index between 54 and 144 MHz is inverted at the centres of H II regions. We find a significant low-frequency flattening at the centres of five out of six H II regions that we selected for this study. Conclusions. The low frequency flattening in H II regions of M 101 can be explained with two different free-free absorption models. The flattening is localised in a region smaller than 1.5 kpc and can only be detected with high resolution (better than 45 ''). The detection of low frequency flattening has important consequences for using radio continuum observations below 100 MHz to measure extinction-free star-formation rates.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] The influence of a local interstellar cloud on the spectrum of the low-frequency galactic radio background
    Korsakov, BG
    Tokarev, YV
    Fleishman, GD
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 1997, 23 (02): : 229 - 233
  • [42] Evaluating Low-frequency Pulsar Observations to Monitor Dispersion with the Giant Metrewave Radio Telescope
    Jones, M. L.
    McLaughlin, M. A.
    Roy, J.
    Lam, M. T.
    Cordes, J. M.
    Kaplan, D. L.
    Bhattacharyya, B.
    Levin, L.
    ASTROPHYSICAL JOURNAL, 2021, 915 (01):
  • [43] LOW-FREQUENCY RADIO EMISSIONS AT NEPTUNE
    KURTH, WS
    BARBOSA, DD
    GURNETT, DA
    POYNTER, RL
    CAIRNS, IH
    GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (10) : 1649 - 1652
  • [44] A LOW-FREQUENCY RADIO ARRAY FOR SPACE
    WEILER, KW
    DENNISON, BK
    JOHNSTON, KJ
    SIMON, RS
    ERICKSON, WC
    KAISER, ML
    CANE, HV
    DESCH, MD
    HAMMARSTROM, LM
    ASTRONOMY & ASTROPHYSICS, 1988, 195 (1-2) : 372 - 379
  • [45] Sprites in low-frequency radio noise
    Fuellekrug, Martin
    Mezentsev, Andrew
    Soula, Serge
    van der Velde, Oscar
    Farges, Thomas
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (10) : 2395 - 2399
  • [46] Low-frequency radio monitoring of microquasars
    Pandey, M.
    Rao, A. P.
    Ishwara-Chandra, C. H.
    Durouchoux, P.
    Manchanda, R. K.
    ASTRONOMY & ASTROPHYSICS, 2007, 463 (02) : 567 - U61
  • [47] PROPAGATION OF LOW-FREQUENCY RADIO SIGNAL
    JOHLER, JR
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1962, 50 (04): : 404 - +
  • [48] LOW-FREQUENCY RADIO ASTRONOMY IN ANTARCTICA
    FANT, A
    SKY AND TELESCOPE, 1980, 60 (06): : 488 - 489
  • [49] Low-frequency radio absorption in Cassiopeia A
    Arias, M.
    Vink, J.
    de Gasperin, F.
    Salas, P.
    Oonk, J. B. R.
    van Weeren, R. J.
    van Amesfoort, A. S.
    Anderson, J.
    Beck, R.
    Bell, M. E.
    Bentum, M. J.
    Best, P.
    Blaauw, R.
    Breitling, F.
    Broderick, J. W.
    Brouw, W. N.
    Brueggen, M.
    Butcher, H. R.
    Ciardi, B.
    de Geus, E.
    Deller, A.
    van Dijk, P. C. G.
    Duscha, S.
    Eisloeffel, J.
    Garrett, M. A.
    Griessmeier, J. M.
    Gunst, A. W.
    van Haarlem, M. P.
    Heald, G.
    Hessels, J.
    Horandel, J.
    Holties, H. A.
    van der Horst, A. J.
    Iacobelli, M.
    Juette, E.
    Krankowski, A.
    van Leeuwen, J.
    Mann, G.
    McKay-Bukowski, D.
    McKean, J. P.
    Mulder, H.
    Nelles, A.
    Orru, E.
    Paas, H.
    Pandey-Pommier, M.
    Pandey, V. N.
    Pekal, R.
    Pizzo, R.
    Polatidis, A. G.
    Reich, W.
    ASTRONOMY & ASTROPHYSICS, 2018, 612
  • [50] Propagation of low-frequency radio waves
    Warrington, EM
    Jones, TB
    IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2000, 147 (01) : 35 - 42