Galilean symmetry of the KdV hierarchy

被引:1
|
作者
Xu, Jianghao [1 ]
Yang, Di [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
关键词
WEIL-PETERSSON VOLUMES; INTERSECTION THEORY; HURWITZ NUMBERS; MODULI SPACE; FIELD; INTEGRALS; UNITARY;
D O I
10.1112/jlms.70075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By solving the infinitesimal Galilean symmetry for the Korteweg-de Vries (KdV) hierarchy, we obtain an explicit expression for the corresponding one-parameter Lie group, which we call the Galilean symmetry of the KdV hierarchy. As an application, we establish an explicit relationship between the non-abelian Born-Infeld partition function and the generalized Br & eacute;zin-Gross-Witten partition function.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] SELF-DUALITY AND THE KDV HIERARCHY
    DAS, A
    GALVAO, CAP
    MODERN PHYSICS LETTERS A, 1993, 8 (07) : 661 - 665
  • [32] THE N=3 SUPERSYMMETRIC KDV HIERARCHY
    YUNG, CM
    MODERN PHYSICS LETTERS A, 1993, 8 (12) : 1161 - 1169
  • [33] RAPIDLY DECREASING SOLUTIONS OF THE KDV HIERARCHY
    FENG, XH
    MATHEMATISCHE NACHRICHTEN, 1994, 167 : 83 - 93
  • [34] Integrable dispersionless KdV hierarchy with sources
    Yang, Zhihua
    Xiao, Ting
    Zeng, Yunbo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26): : 8427 - 8437
  • [35] On tau-functions for the KdV hierarchy
    Boris Dubrovin
    Di Yang
    Don Zagier
    Selecta Mathematica, 2021, 27
  • [36] Matrix Resolvent and the Discrete KdV Hierarchy
    Dubrovin, Boris
    Yang, Di
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (03) : 1823 - 1852
  • [37] STRING EQUATIONS FOR THE KDV HIERARCHY AND THE GRASSMANNIAN
    GUIL, F
    MANAS, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (14): : 3569 - 3582
  • [38] The KdV Hierarchy: Universality and a Painleve Transcendent
    Claeys, T.
    Grava, T.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (22) : 5063 - 5099
  • [39] Matrix Resolvent and the Discrete KdV Hierarchy
    Boris Dubrovin
    Di Yang
    Communications in Mathematical Physics, 2020, 377 : 1823 - 1852
  • [40] Quantum KdV hierarchy and quasimodular forms
    Van Ittersum, Jan-Willem M.
    Ruzza, Giulio
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2024, 18 (02) : 405 - 439