Eco-friendly synthesis of silver nanoparticles using Coffea arabica husk for enhanced antibacterial and anti-cancer applications

被引:1
|
作者
Kavin, Tamilselvan [1 ]
Murugaiyah, Vikneswaran [2 ]
Tan, Jen Kit [3 ]
Kassim, Murni Nur Islamiah [1 ]
Ramakrishna, Seeram [4 ]
Vigneswari, Sevakumaran [1 ,5 ]
机构
[1] Univ Malaysia Terengganu, Inst Climate Adaptat & Marine Biotechnol, Kuala Nerus 21030, Terengganu, Malaysia
[2] Univ Sains Malaysia, Ctr Drug Res, Gelugor 11800, Pulau Pinang, Malaysia
[3] Univ Kebangsaaan Malaysia, Fac Med, Dept Biochem, Kuala Lumpur 56000, Malaysia
[4] Natl Univ Singapore, Ctr Nanotechnol & Sustainabil, Singapore 119260, Singapore
[5] Singapore Eye Res Inst, Ocular Infect & Antimicrobials Res Grp, Singapore, Singapore
来源
BIOMASS & BIOENERGY | 2025年 / 194卷
关键词
AgNPs; Anti-microbial; C. arabica husk; Cytotoxic; LC-MS/MS; GREEN SYNTHESIS; EXTRACT; ANTIOXIDANT;
D O I
10.1016/j.biombioe.2025.107625
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Silver nanoparticles (AgNPs) are widely recognized for their diverse applications in medicine, electronics and environmental remediation. This research introduces a novel green synthesis technique for AgNPs using C . arabica husk extract as a natural reducing and stabilizing agent. Unlike other agro-wastes, C . arabica husk is uniquely rich in bioactive compounds such as amino acids, alkaloids and organic acids, which were identified using liquid chromatography-mass spectrometry. The synthesized AgNPs were characterized using UV-Vis spectrophotometry, scanning electron microscopy and particle size analysis, which confirmed the formation of spherical nanoparticles with an average size of 147 nm. Zeta potential measurements (-27.8 mV) indicated strong nanoparticle stability, and Fourier transform infrared spectroscopy identified functional groups (O-H and C-N) responsible for stabilization. X-ray diffraction analysis confirmed a crystalline structure consistent with a face-centered cubic arrangement. Antimicrobial assays showed inhibition zones of 8.2, 5.3, 4.0 and 3.8 mm for Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli and Staphylococcus aureus, respectively. Cytotoxicity testing on MCF-7 breast cancer cells demonstrated an IC50 value of 16.7 mu g/mL, with over 80 % cell viability in L6 normal skeletal muscle cells, highlighting selective toxicity. This study fills the gap in using C . arabica husk for AgNP synthesis, demonstrating its unique bioactive composition and dual functionality for both nanoparticle synthesis and biomedical applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Synthesis of Biogenic Silver Nanoparticles with Eco-Friendly Processes Using Ganoderma lucidum Extract and Evaluation of Their Theranostic Applications
    Nguyen V.P.
    Le Trung H.
    Nguyen T.H.
    Hoang D.
    Tran T.H.
    Journal of Nanomaterials, 2021, 2021
  • [32] Eco-friendly method for silver nanoparticles immobilized decorated silica: Synthesis & characterization and preliminary antibacterial activity
    Dahlous, Kholood A.
    Abd-Elkader, Omar H.
    Fouda, Moustafa M. G.
    Al Othman, Zeid
    El-Faham, Ayman
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2019, 95 : 324 - 331
  • [33] Eco-Friendly Green Synthesis of Silver Nanoparticles from Egyptian Honey: Evaluating its Antibacterial Activities
    Youssef, Ghada A.
    El-Boraey, Aliaa M.
    Abdel-Tawab, Mai M.
    EGYPTIAN JOURNAL OF BOTANY, 2019, 59 (03): : 709 - 721
  • [34] SYNTHESIS OF ECO-FRIENDLY SILVER NANOPARTICLES USING PLANT EXTRACTS AND ASSESSMENT OF THEIR ANTIMICROBIAL ACTIVITY
    Ibrahim, Mohamed M.
    Hazani, Amal A.
    Al-Homidan, Ali
    Shehata, Afaf
    El-Gaaly, Gehan A.
    Al-Jafari, Abdulaziz
    Ataya, Farid
    Rizwana, Humaira
    Al-Hori, Hadeel
    Moubayed, Nadine
    FRESENIUS ENVIRONMENTAL BULLETIN, 2014, 23 (1A): : 184 - 189
  • [35] A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach
    Mohammadlou, M.
    Maghsoudi, H.
    Jafarizadeh-Malmiri, H.
    INTERNATIONAL FOOD RESEARCH JOURNAL, 2016, 23 (02): : 446 - 463
  • [36] Eco-Friendly Phyto-Synthesis of Silver Nanoparticles Using Jatropha Seedcake Extract
    Bose, Anjali
    Keharia, Haresh
    Deshpande, M. P.
    CHINESE PHYSICS LETTERS, 2013, 30 (12)
  • [37] Eco-Friendly Synthesis of Silver Nanoparticles Using Pulsed Plasma in Liquid: Effect of Surfactants
    Niu, Yubiao
    Omurzak, Emil
    Cai, Rongsheng
    Kyzy, Dinara Syrgakbek
    Zhasnakunov, Zhanarbek
    Satyvaldiev, Abduraim
    Palmer, Richard E.
    SURFACES, 2022, 5 (01): : 202 - 208
  • [38] Eco-Friendly Phyto-Synthesis of Silver Nanoparticles Using Jatropha Seedcake Extract
    Anjali Bose
    Haresh Keharia
    MPDeshpande
    Chinese Physics Letters, 2013, 30 (12) : 169 - 173
  • [39] An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical applications
    Alomar, Taghrid S.
    AlMasoud, Najla
    Awad, Manal A.
    El-Tohamy, Maha F.
    Soliman, Dina A.
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 249
  • [40] Eco-friendly synthesis of silver and copper nanoparticles by Shizophyllum commune fungus and its biomedical applications
    F. Fatima
    I. Wahid
    International Journal of Environmental Science and Technology, 2022, 19 : 7915 - 7926