r-Power for Multiple Hypotheses Testing under Dependence

被引:0
|
作者
Chakraborty, Swarnita [1 ]
Sijuwade, Adebowale [1 ]
Dasgupta, Nairanjana [1 ]
机构
[1] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
来源
STATISTICS AND APPLICATIONS | 2024年 / 22卷 / 03期
关键词
r-power; Multiplicity; Multiple hypotheses testing; Dependence; False posi- tives; Genome-wide association study; FALSE DISCOVERY RATE; DIFFERENTIALLY EXPRESSED GENES; BONFERRONI PROCEDURE; STATISTICAL-METHODS; ASSOCIATION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In an era of "big data" the challenge of managing large-scale multiplicity in statistical analysis has become increasingly crucial. The concept of r-power, introduced Dasgupta et al. (2016), presents an innovative approach to addressing multiplicity with focus on the reliability of selecting a relevant list of hypotheses. This manuscript advances the r-power conversation by relaxing the original assumption of independence among hypotheses to accommodate a block diagonal correlation structure. Through analytical exploration and validation via simulations, we unveil how the underlying dependence structure influences r-power. Our findings illuminate the nuanced role that dependence plays in the reliability of hypothesis selection, offering a deeper understanding and novel perspectives on managing multiplicity in large datasets. Furthermore, we highlight the practicality and applicability of our results in the context of a Genome-Wide Association
引用
收藏
页码:429 / 448
页数:20
相关论文
共 50 条
  • [41] The hypotheses testing problem under unknown parameter
    Darkhovski, BS
    Staroswiecki, M
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2002, 47 (04) : 609 - 622
  • [42] EFFECTS OF STATISTICAL DEPENDENCE ON MULTIPLE TESTING UNDER A HIDDEN MARKOV MODEL
    Chi, Zhiyi
    ANNALS OF STATISTICS, 2011, 39 (01): : 439 - 473
  • [43] Asymptotically minimax testing of r > 2 simple hypotheses
    Kanišauskas V.
    Lithuanian Mathematical Journal, 2000, 40 (3) : 241 - 247
  • [44] The lower regression function and testing expectation dependence dominance hypotheses
    Linton, Oliver
    Whang, Yoon Jae
    Yen, Yu-Min
    ECONOMETRIC REVIEWS, 2021, 40 (08) : 709 - 727
  • [45] ESTIMATING THE PROPORTION OF TRUE NULL HYPOTHESES UNDER DEPENDENCE
    Ostrovnaya, Irina
    Nicolae, Dan L.
    STATISTICA SINICA, 2012, 22 (04) : 1689 - 1716
  • [46] Optimal testing of multiple hypotheses with common effect direction
    Bittman, Richard M.
    Romano, Joseph P.
    Vallarino, Carlos
    Wolf, Michael
    BIOMETRIKA, 2009, 96 (02) : 399 - 410
  • [47] Multiple Testing of Composite Null Hypotheses in Heteroscedastic Models
    Sun, Wenguang
    McLain, Alexander C.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (498) : 673 - 687
  • [48] TESTING MULTIPLE HYPOTHESES USING POPULATION INFORMATION OF SAMPLES
    Wu, Mingqi
    Liang, Faming
    JP JOURNAL OF BIOSTATISTICS, 2010, 4 (02) : 181 - 201
  • [49] Entanglement-enhanced testing of multiple quantum hypotheses
    Quntao Zhuang
    Stefano Pirandola
    Communications Physics, 3
  • [50] Entanglement-enhanced testing of multiple quantum hypotheses
    Zhuang, Quntao
    Pirandola, Stefano
    COMMUNICATIONS PHYSICS, 2020, 3 (01)