Automated Detection of Keratorefractive Laser Surgeries on Optical Coherence Tomography Using Deep Learning

被引:0
|
作者
Assaf, Jad F. [1 ,2 ]
Yazbeck, Hady [2 ]
Reinstein, Dan Z. [3 ,4 ,5 ,6 ,7 ]
Archer, Timothy J. [3 ,4 ]
Assaf, Roland [2 ]
de Ortueta, Diego [8 ]
Arbelaez, Juan [9 ]
Arbelaez, Maria Clara [9 ]
Awwad, Shady T. [10 ]
机构
[1] Oregon Hlth & Sci Univ, Casey Eye Inst, Portland, OR USA
[2] Amer Univ Beirut, Fac Med, Beirut, Lebanon
[3] Reinstein Vis, London, England
[4] London Vis Clin, London, England
[5] Columbia Univ, Med Ctr, New York, NY USA
[6] Sorbonne Univ, Paris, France
[7] Ulster Univ, Biomed Sci Res Inst, Coleraine, North Ireland
[8] Aurelios Augenlaserzentrum Recklinghausen, Recklinghausen, Germany
[9] Muscat Eye Laser Ctr, Muscat, Oman
[10] Amer Univ Beirut, Med Ctr, Dept Ophthalmol, Beirut, Lebanon
关键词
LASIK 3-DIMENSIONAL DISPLAY; FLAP THICKNESS PROFILE; EPITHELIAL THICKNESS; FEMTOSECOND LASER; MYOPIC LASIK; ARTEMIS; REPRODUCIBILITY; ACCURACY; MICROKERATOME; OUTCOMES;
D O I
10.3928/1081597X-20250204-04
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE: To report a deep learning neural network on anterior segment optical coherence tomography (AS-OCT) for automated detection of different keratorefractive laser surgeries-including laser in situ keratomileusis with femtosecond microkeratome (femto-LASIK), LASIK with mechanical microkeratome, photorefractive keratectomy (PRK), keratorefractive lenticule extraction (KLEx), and non-operated eyes-while also distinguishing between myopic and hyperopic treatments within these procedures. METHODS: A total of 14,948 eye scans from 2,278 eyes of 1,166 patients were used to develop a deep learning neural network algorithm with an 80/10/10 patient distribution for training, validation, and testing phases, respectively. The algorithm was evaluated for its accuracy, F1 scores, area under precision-recall curve (AUPRC), and area under receiver operating characteristic curve (AUROC). RESULTS: On the test dataset, the neural network was able to detect the different surgical classes with an accuracy of 96%, a weighted-average F1 score of 96%, and a macro-average F1 score of 96%. The neural network was further able to detect hyperopic and myopic subclasses within each surgical class, with an accuracy of 90%, weighted-average F1 score of 90%, and macro-average F1 score of 83%. CONCLUSIONS: Neural networks can accurately classify a patient's keratorefractive laser history from AS-OCT scans, which may support treatment planning, intraocular lens calculations, and ectasia assessment, particularly in cases where electronic health records are incomplete. This represents a step toward transforming OCT from a diagnostic to a more comprehensive screening tool in refractive clinics.
引用
收藏
页码:e248 / e256
页数:9
相关论文
共 50 条
  • [31] Automated detection and measurement of epidermal thickness using optical coherence tomography
    Weissman, J
    Hancewicz, T
    Kaplan, P
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2005, 52 (03) : P36 - P36
  • [32] Automated detection of glaucoma using optical coherence tomography angiogram images
    Chan, Yam Meng
    Ng, E. Y. K.
    Jahmunah, V.
    Koh, Joel En Wei
    Lih, Oh Shu
    Leon, Leonard Yip Wei
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 115
  • [33] Automated spoof-detection for fingerprints using optical coherence tomography
    Darlow, Luke Nicholas
    Webb, Leandra
    Botha, Natasha
    APPLIED OPTICS, 2016, 55 (13) : 3387 - 3396
  • [34] Deep learning based early stage diabetic retinopathy detection using optical coherence tomography
    Li, Xuechen
    Shen, Linlin
    Shen, Meixiao
    Tan, Fan
    Qiu, Connor S.
    NEUROCOMPUTING, 2019, 369 : 134 - 144
  • [35] Bifurcation detection in intravascular optical coherence tomography using vision transformer based deep learning
    Zhu, Rongyang
    Li, Qingrui
    Ding, Zhenyang
    Liu, Kun
    Lin, Qiutong
    Yu, Yin
    Li, Yuanyao
    Zhou, Shanshan
    Kuang, Hao
    Jiang, Junfeng
    Liu, Tiegen
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (15):
  • [36] Deep-learning based, automated segmentation of macular edema in optical coherence tomography
    Lee, Cecilia S.
    Tyring, Ariel J.
    Deruyter, Nicolaas P.
    Wu, Yue
    Rokem, Ariel
    Lee, Aaron Y.
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (07): : 3440 - 3448
  • [37] Plaque phenotyping using deep learning in optical coherence tomography imaging
    Yamaji, K.
    Kohjitani, H.
    Watanabe, H.
    Taniwaki, M.
    Akashi, R.
    Kubo, S.
    Ohira, H.
    Numasawa, Y.
    Arikawa, M.
    Iwama, M.
    Kitai, T.
    Kobayashi, Y.
    Tomohisa, T.
    Yamaji, Y.
    Ono, K.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [38] Optical coherence tomography choroidal enhancement using generative deep learning
    Bellemo, Valentina
    Kumar Das, Ankit
    Sreng, Syna
    Chua, Jacqueline
    Wong, Damon
    Shah, Janika
    Jonas, Rahul
    Tan, Bingyao
    Liu, Xinyu
    Xu, Xinxing
    Tan, Gavin Siew Wei
    Agrawal, Rupesh
    Ting, Daniel Shu Wei
    Yong, Liu
    Schmetterer, Leopold
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [39] Optical coherence tomography segmentation of retinal fluids using deep learning
    Lu, Huanxiang
    Maunz, Andreas
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [40] Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning
    Guo, Yukun
    Hormel, Tristan T.
    Xiong, Honglian
    Wang, Jie
    Hwang, Thomas S.
    Jia, Yali
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02): : 1 - 12