Artificial intelligence-driven automated lung sizing from chest radiographs

被引:0
|
作者
Ismail, Mostafa K. [1 ,2 ]
Araki, Tetsuro [3 ]
Gefter, Warren B. [2 ]
Suzuki, Yoshikazu [4 ]
Raevsky, Allie [4 ]
Saleh, Aya [4 ]
Yusuf, Sophia [4 ]
Marquis, Abigail [4 ]
Alcudia, Alyster [4 ]
Duncan, Ian [2 ]
Schaubel, Douglas E. [5 ]
Cantu, Edward [4 ]
Rizi, Rahim [2 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
[4] Univ Penn, Perelman Sch Med, Dept Surg, Div Cardiovasc Surg, Philadelphia, PA USA
[5] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA USA
基金
美国国家卫生研究院;
关键词
lung transplant; donor assessment; artificial intelligence; PRIMARY GRAFT DYSFUNCTION; SIZE MISMATCH; TRANSPLANTATION; RECIPIENT; DONOR;
D O I
10.1016/j.ajt.2024.08.015
中图分类号
R61 [外科手术学];
学科分类号
摘要
Lung size measurements play an important role in transplantation, as optimal donorrecipient size matching is necessary to ensure the best possible outcome. Although several strategies for size matching are currently used, all have limitations, and none has proven superior. In this pilot study, we leveraged deep learning and computer vision to develop an automated system for generating standardized lung size measurements using portable chest radiographs to improve accuracy, reduce variability, and streamline donor/ recipient matching. We developed a 2-step framework involving lung mask extraction from chest radiographs followed by feature point detection to generate 6 distinct lung height and width measurements, which we validated against measurements reported by 2 radiologists (T.A. and W.B.G.) for 50 lung transplant recipients. Our system demonstrated <2.5% error (<7.0 mm) with robust interrater and intrarater agreement compared with an expert radiologist review. This is especially promising given that the radiographs used in this study were purposely chosen to include images with technical challenges such as consolidations, effusions, and patient rotation. Although validation in a larger cohort is necessary, this study highlights artificial intelligence's potential to both provide reproducible lung size assessment in real patients and enable studies on the effect of lung size matching on transplant outcomes in large data sets.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [31] Artificial intelligence-driven design of ß-secretase 1 inhibitors
    Njirjak, Marko
    Kalafatovic, Daniela
    Mausa, Goran
    JOURNAL OF PEPTIDE SCIENCE, 2024, 30
  • [32] Artificial Intelligence-Driven Eye Disease Classification Model
    Sait, Abdul Rahaman Wahab
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [33] The ethics of artificial intelligence-driven diagnostic testing in dermatology
    Muzumdar, Sonal
    Grant-Kels, Jane M.
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2024, 91 (06) : 1307 - 1308
  • [34] The ethical challenges of artificial intelligence-driven digital pathology
    McKay, Francis
    Williams, Bethany J.
    Prestwich, Graham
    Bansal, Daljeet
    Hallowell, Nina
    Treanor, Darren
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2022, 8 (03): : 209 - 216
  • [35] Artificial intelligence-driven disruption in science production ahead
    de Miguel, Sergio
    SILVA FENNICA, 2023, 57 (01)
  • [36] Artificial Intelligence for Clinical Interpretation of Bedside Chest Radiographs
    Khader, Firas
    Han, Tianyu
    Mueller-Franzes, Gustav
    Huck, Luisa
    Schad, Philipp
    Keil, Sebastian
    Barzakova, Emona
    Schulze-Hagen, Maximilian
    Pedersoli, Federico
    Schulz, Volkmar
    Zimmermann, Markus
    Nebelung, Lina
    Kather, Jakob
    Hamesch, Karim
    Haarburger, Christoph
    Marx, Gernot
    Stegmaier, Johannes
    Kuhl, Christiane
    Bruners, Philipp
    Nebelung, Sven
    Truhn, Daniel
    RADIOLOGY, 2023, 307 (01)
  • [37] Artificial Intelligence-Driven Timber Wood Defect Characterization from Terahertz Images
    Vijayalakshmi, S.
    Mrudhula, S.
    Kumar, V. Ashok
    Agastin, A. Mercy
    Varun
    Latha, A. Mercy
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2024, 43 (04)
  • [38] The SONICOM Project: Artificial Intelligence-Driven Immersive Audio, From Personalization to Modeling
    Picinali, Lorenzo
    Katz, Brian F. G.
    Geronazzo, Michele
    Majdak, Piotr
    Reyes-Lecuona, Arcadio
    Vinciarelli, Alessandro
    IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (06) : 85 - 88
  • [39] Artificial intelligence-based detection of atrial fibrillation from chest radiographs
    Matsumoto, Toshimasa
    Ehara, Shoichi
    Walston, Shannon L.
    Mitsuyama, Yasuhito
    Miki, Yukio
    Ueda, Daiju
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 5890 - 5897
  • [40] Artificial intelligence-based detection of aortic stenosis from chest radiographs
    Ueda, Daiju
    Yamamoto, Akira
    Ehara, Shoichi
    Iwata, Shinichi
    Abo, Koji
    Walston, Shannon L.
    Matsumoto, Toshimasa
    Shimazaki, Akitoshi
    Yoshiyama, Minoru
    Miki, Yukio
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (01): : 20 - 28