Electroplating Additively Manufactured Honeycomb Structures to Increase Energy Absorption Under Quasi-Static Crush

被引:0
|
作者
Murray, Colleen [1 ]
Wise, Sean [2 ]
Wereley, Norman M. [1 ]
机构
[1] Univ Maryland, Composites Res Lab, College Pk, MD 20742 USA
[2] RePliForm Inc, Baltimore, MD USA
关键词
Additive Manufacturing; Stereolithography; Electroplating; Energy Absorption; Crush Efficiency;
D O I
10.33599/S.I.v6Ono4.04
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Honeycomb (HC) has been used in energy absorption applications due to its high stiffness and low density. Metallic HC are used for energy absorption applications, however, these metallic structures can be challenging to manufacture if complex geometric features designed to improve energy absorption are used, which motivates the use of additive manufacturing (AM). Metal AM methods include powder bed fusion (PBF) and direct energy deposition (DED). In addition to capital equipment cost, these processes possess challenges that include a required inert environment, powder handling, final part porosity, residual stresses, and nonuniform surface finish. These concerns can be alleviated through the use of polymer AM, however, polymeric parts exhibit brittle failure and have a lower stiffness than metallic HC structures. In this study, a low-cost 3D polymer printing method, stereolithography (SLA), is combined with a conventional electroplating process to fabricate a metal -plastic composite HC structure with energy absorption capability much greater than of a plastic HC structures of the same nominal volume. SLA parts have a smooth surface, so that the surface finish is at least as uniform after electroplating as the SLA part. The energy absorption characteristics of the electroplated HC is studied to determine how these energy absorbing materials can be manufactured at reduced cost. Our study confirms that the metal -plastic composite HC increases both the crush strain range and the mean crush stress of these samples, resulting in metal -plastic composite HC structures with substantially increased energy absorption. This study also examines how buckling initiators (Bls), or diamond shaped holes located at 50, 75, and 100% of the height of the hexagonal cell vertices, can influence energy absorption performance. This study shows that it is feasible to fabricate electroplated HCs, using an SLA preform, to achieve a substantial increase in energy absorption over using SLA alone.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [21] Quasi-static and Dynamic Behavior of Additively Manufactured Metallic Lattice Cylinders
    Sadeghi, Hossein
    Bhate, Dhruv
    Abraham, Joseph
    Magallanes, Joseph
    SHOCK COMPRESSION OF CONDENSED MATTER - 2017, 2018, 1979
  • [22] Quasi-static Crush Behavior of Aluminum Hexagonal Honeycomb with Perforated Cell Walls
    Wang, Zhengjin
    Qin, Qinghua
    Wang, Fangfang
    Zhang, Jianxun
    Wang, T. J.
    ADVANCES IN ENGINEERING PLASTICITY XI, 2013, 535-536 : 422 - 425
  • [23] Numerical and constitutive modeling of quasi-static and dynamic mechanical behavior in graded additively manufactured lattice structures
    Wang, Erdong
    Zhou, Jiahui
    Guo, Xiao
    Gu, Man
    Wang, Huiran
    Zhai, Wei
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [24] Comparison of different quasi-static loading conditions of additively manufactured composite hexagonal and auxetic cellular structures
    Zhou, Jin
    Liu, Haibao
    Dear, John P.
    Falzon, Brian G.
    Kazanci, Zafer
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 244
  • [25] Microstructure-topology relationship effects on the quasi-static and dynamic behavior of additively manufactured lattice structures
    Hazeli, Kavan
    Babamiri, Behzad Bahrami
    Indeck, Joseph
    Minor, Andrew
    Askari, Hesam
    MATERIALS & DESIGN, 2019, 176
  • [26] Mechanical properties of additively manufactured AlSi10Mg under quasi-static and cyclic loading
    Yankin, Andrei
    Seisekulova, Aidana
    Perveen, Asma
    Talamona, Didier
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (05) : 1696 - 1714
  • [27] Testing and simulation of additively manufactured AlSi10Mg components under quasi-static loading
    Costas, Miguel
    Morin, David
    de Lucio, Mario
    Langseth, Magnus
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2020, 81
  • [28] Testing and simulation of additively manufactured AlSi10Mg components under quasi-static loading
    Costas, Miguel
    Morin, David
    de Lucio, Mario
    Langseth, Magnus
    European Journal of Mechanics, A/Solids, 2020, 81
  • [29] Experimental evaluation of the crush energy absorption of triggered composite sandwich panels under quasi-static edgewise compressive loading
    Joosten, M. W.
    Dutton, S.
    Kelly, D.
    Thomson, R.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (09) : 1099 - 1106
  • [30] Experimental analysis of energy absorption characteristics in composite sandwich structures with 3D-printed honeycomb core under quasi-static compression
    Mirzaei, Jaber
    Zarei, Hamid Reza
    Khodamoradi, Mohammad Kazem
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2025,