Nanosecond laser annealing: Impact on superconducting silicon on insulator monocrystalline epilayers

被引:0
|
作者
Baron, Y. [1 ]
Labar, J. L. [2 ]
Lequien, S. [3 ]
Pecz, B. [2 ]
Daubriac, R. [4 ]
Kerdiles, S. [4 ]
Alba, P. Acosta [4 ]
Marcenat, C. [5 ]
Debarre, D. [1 ]
Lefloch, F. [5 ]
Chiodi, F. [1 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, F-91120 Palaiseau, France
[2] Inst Tech Phys & Mat Sci, Ctr Energy Res, Thin Film Phys Lab, Konkoly Thege M U 29-33, H-1121 Budapest, Hungary
[3] Univ Grenoble Alpes, CEA, IRIG MEM, F-38000 Grenoble, France
[4] Univ Grenoble Alpes, CEA, LETI, Minatec Campus, F-38000 Grenoble, France
[5] Univ Grenoble Alpes, CEA, Grenoble INP, IRIG Pheliqs, F-38000 Grenoble, France
来源
APL MATERIALS | 2024年 / 12卷 / 12期
关键词
D O I
10.1063/5.0231177
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present superconducting monocrystalline silicon-on-insulator thin 33 nm epilayers. They are obtained by nanosecond laser annealing under ultra-high vacuum on 300 mm wafers heavily pre-implanted with boron (2.5 x 10(16) at./cm(2), 3 keV). Superconductivity is discussed in relation to the structural, electrical, and material properties, a step toward the integration of ultra-doped superconducting Si at large scale. In particular, we highlight the effect of the nanosecond laser annealing energy and the impact of multiple laser anneals. Increasing the energy leads to a linear increase in the layer thickness and to the increase in the superconducting critical temperature T-c from zero (< 35 mK) to 0.5 K. This value is comparable with superconducting Si layers realized by gas immersion laser doping, where dopants are incorporated without introducing the deep defects associated with implantation. Superconductivity only appears when the annealed depth exceeds the initial amorphous layer induced by the boron implantation. Multiple subsequent anneals result in a more homogeneous doping with reduced amount of structural defects and increased conductivity. The quantitative analysis of T-c concludes on a superconducting-non-superconducting bilayer with an extremely low resistance interface. This highlights the possibility to efficiently couple superconducting Si to Si channels.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Trimming of silicon-on-insulator ring-resonators via localized laser annealing
    Biryukova, Vera
    Sharp, Graham J.
    Klitis, Charalambos
    Sorel, Marc
    OPTICS EXPRESS, 2020, 28 (08): : 11156 - 11164
  • [32] LASER ANNEALING OF SILICON
    GODBOLE, VP
    CHAUDHARI, SM
    BULLETIN OF MATERIALS SCIENCE, 1988, 11 (2-3) : 97 - 108
  • [33] LASER ANNEALING OF SILICON
    POATE, JM
    BROWN, WL
    PHYSICS TODAY, 1982, 35 (06) : 24 - 30
  • [34] Laser annealing of silicon
    Baeri, P
    Rimini, E
    MATERIALS CHEMISTRY AND PHYSICS, 1996, 46 (2-3) : 169 - 177
  • [35] Laser induced crystal defects in monocrystalline silicon
    Menold, T.
    Lanoy, F.
    Ametowobla, M.
    Hinderberger, S.
    Ohmer, K.
    Koehler, J. R.
    Werner, J. H.
    LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING (LAMOM) XXIV, 2019, 10905
  • [36] NANOSECOND RESOLVED X-RAY DIFFRACTION DURING PULSED LASER ANNEALING OF SILICON.
    Mills, D.M.
    Larson, B.C.
    White, C.W.
    Noggle, T.S.
    1983, (208): : 1 - 3
  • [37] Thermal annealing of porous silicon to develop a quasi monocrystalline structure
    M. Banerjee
    E. Bontempi
    S. Bhattacharya
    S. Maji
    S. Basu
    H. Saha
    Journal of Materials Science: Materials in Electronics, 2009, 20
  • [38] MODIFICATION OF THE STRUCTURE AND ELECTRICAL ACTIVATION OF AN IMPURITY BY NANOSECOND LASER ANNEALING OF IMPLANTATION-DOPED SILICON
    BAYAZITOV, RM
    IVLEV, GD
    KHAIBULLIN, IB
    MALEVICH, VL
    SAINOV, NA
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1988, 22 (01): : 49 - 51
  • [39] Solid-phase epitaxial regrowth of phosphorus-doped silicon by nanosecond laser annealing
    Kerdiles, S.
    Opprecht, M.
    Bosch, D.
    Ribotta, M.
    Sklenard, B.
    Brunet, L.
    Michalowski, P. P.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 186
  • [40] Thermal annealing of porous silicon to develop a quasi monocrystalline structure
    Banerjee, M.
    Bontempi, E.
    Bhattacharya, S.
    Maji, S.
    Basu, S.
    Saha, H.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2009, 20 (04) : 305 - 311