Agroforestry Land Use Land Cover Area Classification Using Decision Tree Algorithm

被引:0
|
作者
Darmawan, Arief [1 ]
Santoso, Trio [1 ]
Hilmanto, Rudi [1 ]
机构
[1] Univ Lampung, Fac Agr, Forestry Dept, Jl Prof Dr Ir Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia
来源
JURNAL MANAJEMEN HUTAN TROPIKA | 2024年 / 30卷 / 03期
关键词
agroforestry; LampungProvince; Landsat; 9; imagery; vegetation index; decision tree algorithm; VEGETATION INDEXES;
D O I
10.7226/jtfm.30.3.399
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Monitoring the location and extent of agroforestry land use land cover (LULC) in Lampung Province is critical for effective policy development and sustainable agroforestry management. However, existing monitoring efforts have been limited to small regions. This study addressed this gap by employing threshold values from five distinct vegetation indices (ARVI, EVI, GDVI, NDVI, and SAVI) derived from Landsat 9 OLI imagery to accurately identify and estimate agroforestry LULC across the Lampung Province. The data collection activities were carried out using a combination of Landsat 9 OLI satellite imagery acquisition, and ground truth validation on 7 classes of different land use (forest, agroforestry, dry land farming, ricefield, settlements, bare land, and water bodies) within 5,600 points of interest (POI) inside 5 regencies as an area of interest (AOI). This study aimed to predict agroforestry area based on vegetation indices (VIs) threshold using the decision tree (DT) algorithm. The research process involved a series of systematic steps, beginning with satellite image data acquisition and preprocessing, VIs values extraction, and DT sequential for agroforestry areas. The DT computation incorporated the value of each LULC type on the 5 VIs. The result showed that the overall accuracy reached 91.59% with a Kappa coefficient of 0.89, indicating a high level of accuracy for land cover identification. The DT algorithm calculation showed that the agroforestry in Lampung Province estimated spanned for 734,739.61 ha, determined only by NDVI and ARVI. The findings have significant implications for both policy development and agroforestry management. Accurate LULC classification enhances decision-making processes by providing reliable data on land use patterns, which can guide sustainable land management practices and support the creation of region-specific agroforestry policies. This research directly informs policymakers on the extent and distribution of agroforestry areas, offering a foundation for crafting strategies aimed at promoting sustainable land use while mitigating environmental degradation. The methodology also provides a scalable approach for other regions facing similar agroforestry and land management challenges.
引用
收藏
页码:399 / 412
页数:14
相关论文
共 50 条
  • [41] Land use/land cover change classification and prediction using deep learning approaches
    Ebenezer, P. Adlene
    Manohar, S.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 223 - 232
  • [42] Automatic Land Use/Land Cover Classification using Texture and Data Mining Classifier
    Bharathi, S.
    Manju, M.
    Manasa, Vasavi C. L.
    Mallika, H. M.
    Kurule, Maruti M.
    Shenoy, P. Deepa
    Venugopal, K. R.
    Patnaik, L. M.
    2013 IEEE INTERNATIONAL CONFERENCE OF IEEE REGION 10 (TENCON), 2013,
  • [43] A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks
    Carranza-Garcia, Manuel
    Garcia-Gutierrez, Jorge
    Riquelme, Jose C.
    REMOTE SENSING, 2019, 11 (03)
  • [44] Classification of land use/land cover using artificial intelligence (ANN-RF)
    Alshari, Eman A.
    Abdulkareem, Mohammed B.
    Gawali, Bharti W.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 5
  • [45] Land-Use and Land-Cover Mapping Using a Gradable Classification Method
    Kitada, Keigo
    Fukuyama, Kaoru
    REMOTE SENSING, 2012, 4 (06) : 1544 - 1558
  • [46] Land use/land cover change classification and prediction using deep learning approaches
    P. Adlene Ebenezer
    S. Manohar
    Signal, Image and Video Processing, 2024, 18 : 223 - 232
  • [47] Land Use/Land Cover Classification in Uruguay Using Time Series of MODIS Images
    Santiago, Baeza
    Pablo, Baldassini
    Camilo, Bagnato
    Priscila, Pinto
    Jose, Paruelo
    AGROCIENCIA-URUGUAY, 2014, 18 (02): : 95 - 105
  • [48] LAND USE/LAND COVER CLASSIFICATION IN A HETEROGENEOUS AGRICULTURAL LANDSCAPE USING PLANETSCOPE DATA
    Bueno, I. T.
    Antunes, J. F. G.
    Toro, A. P. S. G. D. D.
    Werner, J. P. S.
    Coutinho, A. C.
    Figueiredo, G. K. D. A.
    Lamparelli, R. A. C.
    Esquerdo, J. C. D. M.
    Magalhaes, P. S. G.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 49 - 55
  • [49] Land use/cover decision tree classification fusing multi-temporal and multi-spectral of MODIS
    Liu J.
    Li H.
    Sun D.
    Zhang W.
    Zhou L.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2010, 26 (10): : 312 - 318
  • [50] Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classification
    Sales, Marcio H. R.
    de Bruin, Sytze
    Souza, Carlos, Jr.
    Herold, Martin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60