Improved Session Recommendation Using Contrastive Learning based Tail Adjusted Repeat Aware Graph Neural Network

被引:0
|
作者
Li, Daifeng [1 ]
Tian, Tianjunzi [2 ]
Huang, Zhaohui [1 ]
Lin, Xiaowen [1 ]
Chen, Dingquan [1 ]
Madden, Andrew [3 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Management, Guangzhou 51006, Peoples R China
[2] Nanjing Univ, Dept Informat Management, Nanjing 210023, Peoples R China
[3] Univ Sheffield, South Yorkshire S10 2TN, England
关键词
Session-based Recommendation; Contrastive Learning; Self-Attention Networks; Tail Adjusted Repeat;
D O I
10.2298/CSIS231101013L
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Session-based recommendation using graph neural networks (GNN) is a popular approach to model users' behaviors and attributes of items from the perspective of user-item interaction sequence. However, current researches seldom incorporate the unique attributes of items to delve into a comprehensive analysis of user behaviors. In addition, GNN faces three problems when encounting complex modeling scenarios: long-range dependencies, order information loss, and data sparsity, which are essential to modeling long-tail items. We study the interactions between users and items from a new perspective. A novel Contrastive Learning based Tail Adjusted Repeat Aware Graph Neural Network (CLTAR-GNN) is proposed to tackle the problems. A Tail Adjusted Repeat (TAR) mechanism captures users' repeat-explore behaviors in both short-head and long-tail session items based on graph neural networks. Through the TAR, we are able to further understand the underlying graph-based mechanisms that influence user-item interactions. A Self- Attention (SA) network with position embedding is incorporated to overcome the sequence information loss issues, which may be caused by the complex user behaviors and item characteristics modeling. Finally, a mutli-task learning framework is employed to combine TAR, SA and a contrastive learning model into a unified framework to enhance model performance by collaboratively training graph and sequence-based embeddings. Experimental results show that CLTAR-GNN outperforms the state-of-the-art session-based recommendation methods significantly. The average improvement compared with all baselines are 17.5% (HR@20) and 22.5% (MRR@20) on both experimental datasets.
引用
收藏
页码:345 / 368
页数:24
相关论文
共 50 条
  • [31] Long-Tail Augmented Graph Contrastive Learning for Recommendation
    Zhao, Qian
    Wu, Zhengwei
    Zhang, Zhiqiang
    Zhou, Jun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 387 - 403
  • [32] Contrastive Learning for Session-Based Recommendation
    Chen, Yan
    Qian, Wanhui
    Liu, Dongqin
    Su, Yipeng
    Zhou, Yan
    Han, Jizhong
    Li, Ruixuan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 358 - 369
  • [33] Robust social recommendation based on contrastive learning and dual-stage graph neural network
    Ma, Gang-Feng
    Yang, Xu-Hua
    Long, Haixia
    Zhou, Yanbo
    Xu, Xin-Li
    NEUROCOMPUTING, 2024, 584
  • [34] Multi-level category-aware graph neural network for session-based recommendation
    Zhang, Zhu
    Yang, Bo
    Xu, Hao
    Hu, Wang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [35] Sequence-Aware Graph Neural Network Incorporating Neighborhood Information for Session-Based Recommendation
    Liya Huang
    Ran Li
    Jingsheng Lei
    Yuan Ji
    Guanglu Feng
    Wenbing Shi
    Shengying Yang
    International Journal of Computational Intelligence Systems, 17
  • [36] BA-GNN: Behavior-aware graph neural network for session-based recommendation
    Liang, Yongquan
    Song, Qiuyu
    Zhao, Zhongying
    Zhou, Hui
    Gong, Maoguo
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (06)
  • [37] BA-GNN: Behavior-aware graph neural network for session-based recommendation
    LIANG Yongquan
    SONG Qiuyu
    ZHAO Zhongying
    ZHOU Hui
    GONG Maoguo
    Frontiers of Computer Science, 2023, 17 (06)
  • [38] Category-aware self-supervised graph neural network for session-based recommendation
    Wang, Dongjing
    Du, Ruijie
    Yang, Qimeng
    Yu, Dongjin
    Wan, Feng
    Gong, Xiaojun
    Xu, Guandong
    Deng, Shuiguang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2024, 27 (05):
  • [39] Sequence-Aware Graph Neural Network Incorporating Neighborhood Information for Session-Based Recommendation
    Huang, Liya
    Li, Ran
    Lei, Jingsheng
    Ji, Yuan
    Feng, Guanglu
    Shi, Wenbing
    Yang, Shengying
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [40] Contrastive Multi-Level Graph Neural Networks for Session-Based Recommendation
    Wang, Fuyun
    Gao, Xingyu
    Chen, Zhenyu
    Lyu, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 9278 - 9289