A Graph Deep Reinforcement Learning Traffic Signal Control for Multiple Intersections Considering Missing Data

被引:0
|
作者
Xu, Dongwei [1 ]
Yu, Zefeng [1 ]
Liao, Xiangwang [1 ]
Guo, Haifeng [1 ]
机构
[1] Zhejiang Univ Technol, Dept Inst Cyberspace Secur, Coll Informat Engn, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Aerospace electronics; Roads; Deep reinforcement learning; Vehicle dynamics; Feature extraction; Estimation; Training; Traffic signal control; graph deep reinforcement learning; generative adversarial network; two-stage attention network; NETWORK;
D O I
10.1109/TVT.2024.3444475
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficient traffic signal control (TSC) for multiple intersections is an important way to solve traffic congestion. With the development of deep reinforcement learning (DRL), an increasing number of DRL methods are applied to TSC. However, the prevailing methods in DRL-based TSC does not adequately address the issue of missing data within the agent state space. Furthermore, these methods often insufficiently account for the intricate interactions and relationships among the agents involved. Therefore, a graph deep reinforcement learning traffic signal control for multiple intersections considering missing data is proposed in this paper. Firstly, we propose an agent state space estimation method based on wasserstein generative adversarial network (WGAN). This method is adept at addressing the issue of diverse types of missing data within the state space to ensure its integrity. Secondly, we propose a graph deep reinforcement learning based on two-stage attention network and GraphSage (TAGGRL) to improve TSC efficiency for multiple intersections. A dynamic interaction graph based on two-stage attention network is constructed to facilitate effective interactions among agents. GraphSAGE is constructed for aggregating multi-agent state features. Then, the decision network outputs Q-values based on the extracted features, which guide agents in executing phase-specific actions to enhance the smoothness of multiple intersections. Finally, the experimental results confirm that the agent state space estimation based on WGAN successfully solves the problem of missing data within the state space, thereby enhancing the robustness of TSC for multiple intersections. Furthermore, the TAGGRL model surpasses the baseline model in terms of TSC efficiency for multiple intersections.
引用
收藏
页码:18307 / 18319
页数:13
相关论文
共 50 条
  • [31] Uniformity of markov elements in deep reinforcement learning for traffic signal control
    Ye, Bao-Lin
    Wu, Peng
    Li, Lingxi
    Wu, Weimin
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3843 - 3866
  • [32] Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study
    Tan, Jiyuan
    Yuan, Qian
    Guo, Weiwei
    Xie, Na
    Liu, Fuyu
    Wei, Jing
    Zhang, Xinwei
    SENSORS, 2022, 22 (22)
  • [33] An effective deep reinforcement learning approach for adaptive traffic signal control
    Yu, Mingrui
    Chai, Jaijun
    Lv, Yisheng
    Xiong, Gang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6419 - 6425
  • [34] A Comparison of Deep Reinforcement Learning Models for Isolated Traffic Signal Control
    Mao, Feng
    Li, Zhiheng
    Li, Li
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2023, 15 (01) : 160 - 180
  • [35] Distributed Traffic Signal Control with Fairness Using Deep Reinforcement Learning
    Shirasaka, Shogo
    Kodama, Naoki
    Harada, Taku
    2023 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS, SICE ISCS, 2023, : 117 - 122
  • [36] An Intelligent Traffic Signal Control System Based on Deep Reinforcement Learning
    Zhou, Chenming
    Liu, Su
    Li, Xinyu
    Ruan, Junhui
    Gao, Yayu
    2020 INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC), 2020, : 255 - 259
  • [37] Researches on Intelligent Traffic Signal Control Based on Deep Reinforcement Learning
    Luo, Juan
    Li, Xinyu
    Zheng, Yanliu
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 729 - 734
  • [38] Hierarchical graph multi-agent reinforcement learning for traffic signal control
    Yang, Shantian
    INFORMATION SCIENCES, 2023, 634 : 55 - 72
  • [39] Traffic Signal Control Based on Reinforcement Learning with Graph Convolutional Neural Nets
    Nishi, Tomoki
    Otaki, Keisuke
    Hayakawa, Keiichiro
    Yoshimura, Takayoshi
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 877 - 883
  • [40] Model-based graph reinforcement learning for inductive traffic signal control
    Devailly, François-Xavier
    Larocque, Denis
    Charlin, Laurent
    arXiv, 2022,