Exploring chemical space - Generative models and their evaluation

被引:10
|
作者
Vogt, Martin [1 ]
机构
[1] Rheinische Friedrich Wilhelms Univ, Dept Life Sci Informat, Unit Chem Biol & Med Chem, B It,LIMES Program, Friedrich Hirzebruch Allee 5-6, D-53115 Bonn, Germany
关键词
Artificial intelligence; Chemical space; Chemical space exploration; Deep neural networks; Generative models; Inverse QSAR/QSPR; DE-NOVO DESIGN; GENETIC ALGORITHM; SMALL MOLECULES; DRUG DESIGN; DATABASE; UNIVERSE; EXPLORATION; METHODOLOGY;
D O I
10.1016/j.ailsci.2023.100064
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in the field of artificial intelligence, specifically regarding deep learning methods, have invigorated research into novel ways for the exploration of chemical space. Compared to more traditional methods that rely on chemical fragments and combinatorial recombination deep generative models generate molecules in a non-transparent way that defies easy rationalization. However, this opaque nature also promises to explore uncharted chemical space in novel ways that do not rely on structural similarity directly. These aspects and the complexity of training such models makes model assessment regarding novelty, uniqueness, and distribution of generated molecules a central aspect. This perspective gives an overview of current methodologies for chemical space exploration with an emphasis on deep neural network approaches. Key aspects of generative models include choice of molecular representation, the targeted chemical space, and the methodology for assessing and validating chemical space coverage.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Generative Models as an Emerging Paradigm in the Chemical Sciences
    Anstine, Dylan M.
    Isayev, Olexandr
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (16) : 8736 - 8750
  • [23] Generative Topographic Mapping Approach to Chemical Space Analysis
    Gaspar, Helena A.
    Sidorov, Pavel
    Horvath, Dragos
    Baskin, Igor I.
    Marcou, Gilles
    Varnek, Alexandre
    FRONTIERS IN MOLECULAR DESIGN AND CHEMIAL INFORMATION SCIENCE - HERMAN SKOLNIK AWARD SYMPOSIUM 2015: JURGEN BAJORATH, 2016, 1222 : 211 - 241
  • [24] Learning Generative State Space Models for Active Inference
    Catal, Ozan
    Wauthier, Samuel
    De Boom, Cedric
    Verbelen, Tim
    Dhoedt, Bart
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [25] Exploring Chemical Space with Machine Learning
    Arus-Pous, Josep
    Awale, Mahendra
    Probst, Daniel
    Reymond, Jean-Louis
    CHIMIA, 2019, 73 (12) : 1018 - 1023
  • [26] Exploring the chemical space of γ-secretase modulators
    Zettl, Heiko
    Weggen, Sascha
    Schneider, Petra
    Schneider, Gisbert
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2010, 31 (09) : 402 - 410
  • [27] Exploring the chemical space of the human microbiome
    Lei Tang
    Nature Methods, 2019, 16 : 1201 - 1201
  • [28] Exploring the chemical space of aromatase inhibitors
    Nantasenamat, Chanin
    Li, Hao
    Mandi, Prasit
    Worachartcheewan, Apilak
    Monnor, Teerawat
    Isarankura-Na-Ayudhya, Chartchalerm
    Prachayasittikul, Virapong
    MOLECULAR DIVERSITY, 2013, 17 (04) : 661 - 677
  • [29] Computing methods for exploring the chemical space
    Do, QT
    Bernard, P
    BIOFUTUR, 2005, (259) : 27 - 33
  • [30] Exploring the chemical space of aromatase inhibitors
    Chanin Nantasenamat
    Hao Li
    Prasit Mandi
    Apilak Worachartcheewan
    Teerawat Monnor
    Chartchalerm Isarankura-Na-Ayudhya
    Virapong Prachayasittikul
    Molecular Diversity, 2013, 17 : 661 - 677