Traffic Flow Prediction with Swiss Open Data: A Deep Learning Approach

被引:0
|
作者
Brimos, Petros [1 ]
Karamanou, Areti [1 ]
Kalampokis, Evangelos [1 ]
Tarabanis, Konstantinos [1 ]
机构
[1] Univ Macedonia, Dept Business Adm, Informat Syst Lab, Thessaloniki 54636, Greece
来源
关键词
Dynamic Open Government Data; Traffic forecasting; Graph Neural Networks; Open Government Data; deep learning;
D O I
10.1007/978-3-031-41138-0_20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Open government data (OGD) are provided by the public sector and governments in an open, freely accessible format. Among various types of OGD, dynamic data generated by sensors, such as traffic data, can be utilized to develop innovative artificial intelligence (AI) algorithms and applications. As AI algorithms, specifically Deep Neural Networks, necessitate large amounts of data, dynamic OGD datasets serve as supplemental resources to existing traffic datasets, used for performance comparison and benchmarking. This work examines the effectiveness of using open traffic data from the Swiss open data portal to develop a Graph Neural Network (GNN) model for traffic forecasting. To this end, the objective of this study is to probe the extent to which dynamic OGD can enhance the accuracy and efficiency of traffic forecasting models, and more critically, to investigate the potential of this data in driving the development of cutting-edge AI models for traffic flow prediction. We posit that strategic utilization of such data has the potential to catalyze a transformative shift in the realm of traffic management and control, by fostering intelligent solutions that effectively leverage the predictive capabilities of AI models. The results indicate that the GNN-based algorithm is effective in predicting future traffic flow, outperforming two traditional baselines for time series forecasting.
引用
收藏
页码:313 / 328
页数:16
相关论文
共 50 条
  • [21] Deep learning model for traffic flow prediction in wireless network
    Kavitha, A. K.
    Praveena, S. Mary
    AUTOMATIKA, 2023, 64 (04) : 848 - 857
  • [22] Traffic Flow Prediction Based on Deep Learning in Internet of Vehicles
    Chen, Chen
    Liu, Ziye
    Wan, Shaohua
    Luan, Jintai
    Pei, Qingqi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3776 - 3789
  • [23] Traffic flow prediction models - A review of deep learning techniques
    Kashyap, Anirudh Ameya
    Raviraj, Shravan
    Devarakonda, Ananya
    Shamanth, R.
    Santhosh, K. V.
    Bhat, Soumya J.
    COGENT ENGINEERING, 2022, 9 (01):
  • [24] Motorway Traffic Flow Prediction using Advanced Deep Learning
    Mihaita, Adriana-Simona
    Li, Haowen
    He, Zongyang
    Rizoiu, Marian-Andrei
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 1683 - 1690
  • [25] Short Term Traffic Flow Prediction Based on Deep Learning
    Li, JiaWen
    Wang, JingSheng
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 2457 - 2469
  • [26] MTGCN: A Multitask Deep Learning Model for Traffic Flow Prediction
    Wang, Fucheng
    Xu, Jiajie
    Liu, Chengfei
    Zhou, Rui
    Zhao, Pengpeng
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 435 - 451
  • [27] Why Uncertainty in Deep Learning for Traffic Flow Prediction Is Needed
    Kim, Mingyu
    Lee, Donghyun
    SUSTAINABILITY, 2023, 15 (23)
  • [28] Road traffic flow prediction using deep transfer learning
    Wang, Bin
    Yan, Zheng
    Lu, Jie
    Zhang, Guangquan
    Li, Tianrui
    DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 : 331 - 338
  • [29] Deep learning for short-term traffic flow prediction
    Polson, Nicholas G.
    Sokolov, Vadim O.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2017, 79 : 1 - 17
  • [30] Research on Big Data-Driven Urban Traffic Flow Prediction Based on Deep Learning
    Qin, Xiaoan
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 16 (01)