renewables;
energy integration;
efficiency;
environmental sustainability;
district energy;
simulation;
NETWORK;
DEMAND;
MODEL;
D O I:
10.3390/en18051259
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The relevance is introducing fourth generation district heating (4GDH), which decreases operation and maintenance costs by utilizing the efficiency of low temperature district heating (LTDH). The aim is to develop a methodology allowing for a more flexible heat demand model and accurate function describing the relationship between outdoor temperature and heat demand. It is represented by a black-box model based on historical data collected from heating, ventilation, and air conditioning (HVAC) systems. Energy delivery/consumption is analyzed with the help of a set of statistical and regression formulas. The analysis of operational data is then transformed to methodology to regulate heat supply with combined heat-and-power (CHP) generation. The key features are that the model takes into account thermal capacity and type of substation; the district heating (DH) plant is not assumed to have a fixed return temperature and generation profile. The novelty is an emphasis on DH operation and introduction of statistics into a dynamic simulation model. With no abnormal buildings, higher accuracy of modeling is achieved. Most of the consumers are pretty similar in thermal response, even though specific energy demand and heated volume may differ. Heat demand of an old building is better simulated with discrete regression, while those with pump-equipped substations are modeled with linear regression.