Physics-Informed Neural Networks for Steady-State Weir Flows Using the Serre-Green-Naghdi Equations

被引:0
|
作者
Ai, Congfang [1 ]
Ma, Yuxiang [1 ]
Li, Zhihan [1 ]
Dong, Guohai [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Physics-informed neural network (PINN); Serre-Green-Naghdi equations (SGNEs); Forward problem; Inverse problem; Weir flow; MODEL;
D O I
10.1061/JHEND8.HYENG-14064
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents physics-informed neural networks (PINNs) to approximate the Serre-Green-Naghdi equations (SGNEs) that model steady-state weir flows. Four PINNs are proposed to solve the forward problem and three types of inverse problem. For the forward problem in which continuous and smooth beds are available, we constructed PINN 1 to predict the water depth profile over a weir. Good agreements between the PINN 1 solutions and experimental data demonstrated the capability of PINN 1 to resolve the steady-state weir flows. For the inverse problems with input discretized beds, PINN 2 was designed to output both the water depth profile and the bed profile. The free-surface profiles based on the PINN 2 solutions were in good agreement with the experimental data, and the reconstructed bed profiles of PINN 2 agreed well with the input discretized beds, demonstrating that PINN 2 can reproduce weir flows accurately when only discretized beds are available. For the inverse problems with input measured free surface, PINN 3 and PINN 4 were built to output both the free-surface profile and the bed profile. The output free-surface profiles of PINN 3 and PINN 4 showed good agreement with the experimental data. The inferred bed profiles of PINN 3 agreed generally well with the analytical weir profile or the control points of the weir profile, and the inferred bed profiles of PINN 4 were in good agreement with the analytical weir profile for the investigated test case. These indicate that the proposed PINN 3 and PINN 4 can satisfactorily infer weir profiles. Overall, PINNs are comparable to the traditional numerical models for forward problems, but they can resolve the inverse problems which cannot be solved directly using traditional numerical models.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Using physics-informed neural networks to compute quasinormal modes
    Cornell, Alan S.
    Ncube, Anele
    Harmsen, Gerhard
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [42] Optimal control of PDEs using physics-informed neural networks
    Mowlavi, Saviz
    Nabi, Saleh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [43] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [44] PINNeik: Eikonal solution using physics-informed neural networks
    bin Waheed, Umair
    Haghighat, Ehsan
    Alkhalifah, Tariq
    Song, Chao
    Hao, Qi
    COMPUTERS & GEOSCIENCES, 2021, 155
  • [45] Efficient physics-informed neural networks using hash encoding
    Huang, Xinquan
    Alkhalifah, Tariq
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
  • [46] Solving the pulsar equation using physics-informed neural networks
    Stefanou, Petros
    Urban, Jorge F.
    Pons, Jose A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (01) : 1504 - 1511
  • [47] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2024, 45 (06) : 333 - 336
  • [48] Solving nonlinear soliton equations using improved physics-informed neural networks with adaptive mechanisms
    Guo, Yanan
    Cao, Xiaoqun
    Peng, Kecheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (09)
  • [49] Physics-informed State-space Neural Networks for transport phenomena
    Dave, Akshay J.
    Vilim, Richard B.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [50] Designing Progressive Lenses Using Physics-Informed Neural Networks to Solve Partial Differential Equations
    Xiang, Huazhong
    Cheng, Hui
    Ding, Qihui
    Zheng, Zexi
    Chen, Jiabi
    Wang, Cheng
    Zhang, Dawei
    Zhuang, Songlin
    ACTA OPTICA SINICA, 2025, 45 (01)