Screening for 26 per- and polyfluoroalkyl substances (PFAS) in German drinking waters with support of residents

被引:5
|
作者
Ingold, Vanessa [1 ]
Kampfe, Alexander [2 ]
Ruhl, Aki Sebastian [1 ,3 ]
机构
[1] German Environm Agcy, Sect 2 3 3,Schichauweg 58, D-12307 Berlin, Germany
[2] German Environm Agcy, Sect 2 3 2,Heinrich Heine Str 12, D-08645 Bad Elster, Germany
[3] Tech Univ Berlin, Chair Water Qual Control, KF4,Str 17 Juni 135, D-10623 Berlin, Germany
来源
ECO-ENVIRONMENT & HEALTH | 2023年 / 2卷 / 04期
关键词
Persistent chemicals; Organic micro-pollutants; EU drinking water directive; Indicator PFAS; Drinking water; PERFLUORINATED SURFACTANTS; PERFLUOROALKYL SUBSTANCES; RIVER; CONTAMINATION;
D O I
10.1016/j.eehl.2023.08.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The occurrence of per- and polyfluoroalkyl substances (PFAS) in water cycles poses a challenge to drinking water quality and safety. In order to counteract the large knowledge gap regarding PFAS in German drinking water, 89 drinking water samples from all over Germany were collected with the help of residents and were analyzed for 26 PFAS by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The 20 PFAS recently regulated by sum concentration (PFASP20), as well as six other PFAS, were quantified by targeted analysis. In all drinking water samples, PFASP20 was below the limit of 0.1 mu g/L, but the sum concentrations ranged widely from below the limit of quantification up to 80.2 ng/L. The sum concentrations (PFASP4) of perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorononanoate of 20 ng/L were exceeded in two samples. The most frequently detected individual substances were PFOS (in 52% of the samples), perfluorobutanesulfonate (52%), perfluorohexanoate (PFHxA) (44%), perfluoropentanoate (43%) and PFHxS (35%). The highest single concentrations were 23.5 ng/L for PFHxS, 15.3 ng/L for PFOS, and 10.1 ng/L for PFHxA. No regionally elevated concentrations were identified, but some highly urbanized areas showed elevated levels. Concentrations of substitution PFAS, including 2,3,3,3-tetrafluoro2-(heptafluoropropoxy)propanoate and 2,2,3-trifluor-3-[1,1,2,2,3,3-hexafluor-3-(trifluormethoxy)propoxy]-propanoate (anion of ADONA), were very low compared to regulated PFAS. The most frequently detected PFAS were examined for co-occurrences, but no definite correlations could be found.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 50 条
  • [31] An Integrated Approach for Determination of Total Per- and Polyfluoroalkyl Substances (PFAS)
    Shojaei, Marzieh
    Kumar, Naveen
    Guelfo, Jennifer L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (20) : 14517 - 14527
  • [32] Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS)
    Clark, Rebecca B.
    Dick, Jeffrey E.
    CHEMICAL COMMUNICATIONS, 2021, 57 (66) : 8121 - 8130
  • [33] Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids
    Garg, Anushka
    Shetti, Nagaraj P.
    Basu, Soumen
    Nadagouda, Mallikarjuna N.
    Aminabhavi, Tejraj M.
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [34] Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing
    Schymanski, Emma L.
    Zhang, Jian
    Thiessen, Paul A.
    Chirsir, Parviel
    Kondic, Todor
    Bolton, Evan E.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (44) : 16918 - 16928
  • [35] Tools for Investigating the Expanding Per- and Polyfluoroalkyl Substances (PFAS) Universe
    Schwichtenberg, Trevor
    LCGC NORTH AMERICA, 2022, 40 (11) : 546 - 548
  • [36] Multidimensional library for the improved identification of per- and polyfluoroalkyl substances (PFAS)
    Joseph, Kara M.
    Boatman, Anna K.
    Dodds, James N.
    Kirkwood-Donelson, Kaylie I.
    Ryan, Jack P.
    Zhang, Jian
    Thiessen, Paul A.
    Bolton, Evan E.
    Valdiviezo, Alan
    Sapozhnikova, Yelena
    Rusyn, Ivan
    Schymanski, Emma L.
    Baker, Erin S.
    SCIENTIFIC DATA, 2025, 12 (01)
  • [37] Incidence of per- and polyfluoroalkyl substances (PFAS) in private drinking water supplies in Southwest Virginia, USA
    Hohweiler, Kathleen
    Krometis, Leigh-Anne
    Ling, Erin J.
    Xia, Kang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 929
  • [38] Occupational exposures to airborne per- and polyfluoroalkyl substances (PFAS)-A review
    Paris-Davila, Tamara
    Gaines, Linda G. T.
    Lucas, Katherine
    Nylander-French, Leena A.
    AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, 2023, 66 (05) : 393 - 410
  • [39] Per- and polyfluoroalkyl substances (PFAS) at the interface of biological and environmental systems
    Apul, Onur
    Howell, Caitlin
    Hatinoglu, M. Dilara
    BIOINTERPHASES, 2023, 18 (05)
  • [40] Electrochemical methods for treatment of per- and polyfluoroalkyl substances (PFAS): A review
    Tan, Benjamin Tze-Wei
    Abu Bakar, Noor Hana Hanif
    Lee, Hooi Ling
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):