Improved Feature Fusion and Representation for Detecting Keratoconus from Corneal Maps

被引:0
|
作者
Hazarbassanov, Rossen Mihaylov [1 ]
Al-Zubaidi, Laith [2 ]
Al-Timemy, Ali [3 ,4 ]
Arce, Carlos [5 ]
Fabres Franco, Pedro Henrique [1 ]
Dos Santos, Luzia Alves [1 ]
Mosa, Zahraa [6 ]
Abdelmotaal, Hazem M. [7 ]
Lavric, Alexandru [8 ]
Takahashi, Hidenori [9 ]
Taneri, Suphi [10 ,11 ]
Munir, Wuqaas [12 ]
Yousefi, Siamak [13 ,14 ]
机构
[1] Univ Fed Sao Paulo, Dept Ophthalmol & Visual Sci, Escola Paulista Med, Sao Paulo, SP, Brazil
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld, Australia
[3] Univ Baghdad, Biomed Engn Dept, AL Khwarizmi Coll Engn, Baghdad, Iraq
[4] Univ Plymouth, Comp & Math, Plymouth, Devon, England
[5] Eye Clin Sousas, Campinas, Brazil
[6] Al Nahrain Univ, Coll Sci, Baghdad, Iraq
[7] Assiut Univ, Ophthalmol, Fac Med, Assiut, Egypt
[8] Stefan cel Mare Univ Suceava, Comp Elect & Automat, Suceava, Romania
[9] Jichi Ika Daigaku, Ophthalmol, Shimotsuke, Tochigi, Japan
[10] Ruhr Univ Bochum, Univ Eye Clin, Bochum, Nordrhein Westf, Germany
[11] Zentrum Refrakt Chirurg, Munster, Germany
[12] Univ Maryland, Dept Ophthalmol & Visual Sci, Sch Med, Baltimore, MD USA
[13] Univ Tennessee, Ophthalmol, Hlth Sci Ctr, Memphis, TN USA
[14] Univ Tennessee, Hlth Sci Ctr, Genet Genom & Informat, Memphis, TN USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PB0024
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Four discriminant models for detecting keratoconus pattern using Zernike coefficients of corneal aberrations
    Makoto Saika
    Naoyuki Maeda
    Yoko Hirohara
    Toshifumi Mihashi
    Takashi Fujikado
    Kohji Nishida
    Japanese Journal of Ophthalmology, 2013, 57 : 503 - 509
  • [32] Four discriminant models for detecting keratoconus pattern using Zernike coefficients of corneal aberrations
    Saika, Makoto
    Maeda, Naoyuki
    Hirohara, Yoko
    Mihashi, Toshifumi
    Fujikado, Takashi
    Nishida, Kohji
    JAPANESE JOURNAL OF OPHTHALMOLOGY, 2013, 57 (06) : 503 - 509
  • [33] Validation of the estimation of corneal aberrations from videokeratography in keratoconus
    Barbero, S
    Marcos, S
    Merayo-Lloves, J
    Moreno-Barriuso, E
    JOURNAL OF REFRACTIVE SURGERY, 2002, 18 (03) : 263 - 270
  • [34] Distinguishing subclinical from clinical keratoconus by corneal measurements
    Nicula, Cristina Ariadna
    Horvath, Karin Ursula
    Nicula, Ariadna Patricia
    Bulboaca, Adriana Elena
    Bolboaca, Sorana D.
    Nicula, Dorin
    FRONTIERS IN MEDICINE, 2024, 11
  • [35] Network Intrusion Detection with Improved Feature Representation
    Lee, Geonsu
    Rhee, Hochang
    Shim, Jae Hoon
    Koo, Hyung Il
    Cho, Nam Ik
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 2049 - 2054
  • [36] Combining OCT Corneal Topography and Thickness Maps to Diagnose Keratoconus Using a Convolutional Neural Network
    Pavlatos, Elias
    Huang, David
    Li, Yan
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [37] Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography
    Li, Yan
    Chamberlain, Winston
    Tan, Ou
    Brass, Robert
    Weiss, Jack L.
    Huang, David
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2016, 42 (02): : 284 - 295
  • [38] Feature Maps: A Comprehensible Software Representation for Design Pattern Detection
    Thaller, Hannes
    Linsbauer, Lukas
    Egyed, Alexander
    2019 IEEE 26TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER), 2019, : 207 - 217
  • [39] Representation of Uncertain Occupancy Maps with High Level Feature Vectors
    Arukgoda, Janindu
    Ranasinghe, Ravindra
    Dissanayake, Gamini
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 1035 - 1041
  • [40] DATA REPRESENTATION IN HYBRID CODING FRAMEWORK FOR FEATURE MAPS COMPRESSION
    Chen, Zhuo
    Duan, Ling-Yu
    Wang, Shiqi
    Lin, Weisi
    Kot, Alex C.
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3094 - 3098