End-to-end Feature Selection Approach for Learning Skinny Trees

被引:0
|
作者
Ibrahim, Shibal [1 ]
Behdin, Kayhan [1 ]
Mazumder, Rahul [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
MUTUAL INFORMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new optimization-based approach for feature selection in tree ensembles, an important problem in statistics and machine learning. Popular tree ensemble toolkits e.g., Gradient Boosted Trees and Random Forests support feature selection post-training based on feature importance scores, while very popular, they are known to have drawbacks. We propose Skinny Trees: an end-to-end toolkit for feature selection in tree ensembles where we train a tree ensemble while controlling the number of selected features. Our optimization-based approach learns an ensemble of differentiable trees, and simultaneously performs feature selection using a grouped l0-regularizer. We use first-order methods for optimization and present convergence guarantees for our approach. We use a dense-to-sparse regularization scheduling scheme that can lead to more expressive and sparser tree ensembles. On 15 synthetic and real-world datasets, Skinny Trees can achieve 1.5 620 feature compression rates, leading up to 10 faster inference over dense trees, without any loss in performance. Skinny Trees lead to superior feature selection than many existing toolkits e.g., in terms of AUC performance for 25% feature budget, Skinny Trees outperforms LightGBM by 10.2% (up to 37.7%), and Random Forests by 3% (up to 12.5%).
引用
收藏
页数:27
相关论文
共 50 条
  • [31] An end-to-end inverse reinforcement learning by a boosting approach with relative entropy
    Zhang, Tao
    Liu, Ying
    Hwang, Maxwell
    Hwang, Kao-Shing
    Ma, ChunYan
    Cheng, Jing
    INFORMATION SCIENCES, 2020, 520 : 1 - 14
  • [32] An end-to-end deep learning approach for tool wear condition monitoring
    Ma, Lin
    Zhang, Nan
    Zhao, Jiawei
    Kong, Haoqiang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (5-6): : 2907 - 2920
  • [33] An end-to-end approach to autonomous vehicle control using deep learning
    Magera Novello, Gustavo Antonio
    Yamamoto, Henrique Yda
    Lustosa Cabral, Eduardo Lobo
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2021, 13 (03): : 32 - 41
  • [34] STATISTICAL LEARNING FOR END-TO-END SIMULATIONS
    Vicent, J.
    Verrelst, J.
    Rivera-Caicedo, J. P.
    Sabater, N.
    Munoz-Mari, J.
    Camps-Valls, G.
    Moreno, J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1699 - 1702
  • [35] END-TO-END LEARNING FOR MUSIC AUDIO
    Dieleman, Sander
    Schrauwen, Benjamin
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [36] End-to-end Learning for Graph Decomposition
    Song, Jie
    Andres, Bjoern
    Black, Michael J.
    Hilliges, Otmar
    Tang, Siyu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10092 - 10101
  • [37] Amharic OCR: An End-to-End Learning
    Belay, Birhanu
    Habtegebrial, Tewodros
    Meshesha, Million
    Liwicki, Marcus
    Belay, Gebeyehu
    Stricker, Didier
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [38] The Predictron: End-To-End Learning and Planning
    Silver, David
    van Hasselt, Hado
    Hessel, Matteo
    Schaul, Tom
    Guez, Arthur
    Harley, Tim
    Dulac-Arnold, Gabriel
    Reichert, David
    Rabinowitz, Neil
    Barret, Andre
    Degris, Thomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [39] End-to-end intelligent MCS selection algorithm
    Xue, Xiaosong
    Pan, Wei
    Yan, Fang
    Li, Na
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1876 - 1880
  • [40] END-TO-END LEARNING OF COMPRESSIBLE FEATURES
    Singh, Saurabh
    Abu-El-Haija, Sami
    Johnston, Nick
    Balle, Johannes
    Shrivastava, Abhinav
    Toderici, George
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3349 - 3353