Tailoring surface characteristics of laser powder bed fusioned AISI 316L stainless steel for biomedical applications

被引:0
|
作者
Mofazali, Parinaz [1 ]
Dustmohamadi, Zeinab [1 ]
Atapour, Masoud [1 ]
Sheikholeslam, Mohammadali [2 ]
Saboori, Abdollah [3 ]
Iuliano, Luca [3 ]
机构
[1] Isfahan Univ Technol, Dept Mat Engn, Esfahan 84156 83111, Iran
[2] Isfahan Univ Med Sci, Sch Adv Technol Med, Dept Biomat Nanotechnol & Tissue Engn, Esfahan, Iran
[3] Politecn Torino, Integrated Addit Mfg Ctr, Dept Management & Prod Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Additive manufacturing; Laser powder bed fusion; AISI 316L stainless steel; Surface treatment; Laser-polishing; Vibro-finishing; CELL-ADHESION; DIFFERENTIATION; ROUGHNESS; ENERGY;
D O I
10.1007/s40964-024-00882-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
AISI 316L stainless steel, manufactured using laser powder bed fusion (L-PBF) technology, is renowned for its low carbon content, biocompatibility, excellent mechanical properties, and corrosion resistance, making it suitable for biomedical applications. This research focuses on the vibro finishing and laser polishing of L-PBF AISI 316L stainless steel to improve its surface characteristics. The quality of the treatments was evaluated using various techniques, including X-ray diffraction, scanning electron microscopy, surface roughness analysis, electrochemical tests, wettability assessment, cytotoxicity analysis, and cell adhesion promotion assessment. The results indicate that both surface treatments effectively reduced surface roughness under optimal conditions. Laser-polishing treatment significantly improved wettability and demonstrated higher corrosion resistance during experiments conducted in phosphate-buffered saline. Electrochemical outcomes indicate that the vibro-finished and laser-polished samples possess superior corrosion resistance compared to the as-built L-PBF, which can be attributed to the improvement in surface properties. Moreover, the treated samples exhibited favorable surface energy, positively influencing cell adhesion. Furthermore, analysis of cell morphology reveals that when MG63 cells are cultured on laser-polished surfaces, they exhibit better adhesion compared to the as-built samples. These findings highlight the potential of vibro-finishing and laser-polishing techniques in enhancing the surface quality and biocompatibility of L-PBF AISI 316L stainless steel, offering promising prospects for its application in biomedical devices.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Effect of Thermal Treatment on Corrosion Behavior of AISI 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Andreatta, Francesco
    Lanzutti, Alex
    Revilla, Reynier, I
    Vaglio, Emanuele
    Totis, Giovanni
    Sortino, Marco
    de Graeve, Iris
    Fedrizzi, Lorenzo
    MATERIALS, 2022, 15 (19)
  • [22] Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion
    Wei HAN
    Fengzhou FANG
    Frontiers of Mechanical Engineering, 2021, (03) : 580 - 592
  • [23] Magnetically driven internal finishing of AISI 316L stainless steel tubes generated by laser powder bed fusion
    Zhang, Jiong
    Wang, Hao
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 76 : 155 - 166
  • [24] Effects of Powder Characteristics on Selective Laser Melting of 316L Stainless Steel Powder
    Zhang, Sheng
    Wei, Qingsong
    Lin, Guangke
    Zhao, Xiao
    Shi, Yusheng
    MANUFACTURING PROCESS TECHNOLOGY, PTS 1-5, 2011, 189-193 : 3664 - 3667
  • [25] Spall damage mechanisms in laser powder bed fabricated stainless steel 316L
    Koube, K. D.
    Kennedy, G.
    Bertsch, K.
    Kacher, J.
    Thoma, D. J.
    Thadhani, N. N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 851
  • [26] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)
  • [27] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [28] Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel
    Pitrmuc, Zdenek
    Simota, Jan
    Beranek, Libor
    Mikes, Petr
    Andronov, Vladislav
    Sommer, Jiri
    Holesovsky, Frantisek
    MATERIALS, 2022, 15 (02)
  • [29] Development of crystallographic misorientation in laser powder bed fusion 316L stainless steel
    Biswas, Prosenjit
    Ma, Ji
    ADDITIVE MANUFACTURING, 2024, 80
  • [30] Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel
    Kim, Changgong
    Yin, Houshang
    Shmatok, Andrii
    Prorok, Barton C.
    Lou, Xiaoyuan
    Matlack, Kathryn H.
    ADDITIVE MANUFACTURING, 2021, 38