A nonlocal traffic flow model with stochastic velocity

被引:1
|
作者
Boehme, Timo [1 ]
Goettlich, Simone [1 ]
Neuenkirch, Andreas [1 ]
机构
[1] Univ Mannheim, Dept Math, B6, D-68159 Mannheim, Germany
关键词
Nonlocal scalar conservation laws; traffic flow; stochastic velocities; numerical simulations; SCALAR CONSERVATION-LAWS; WAVES; LIMIT; FLUX;
D O I
10.1051/m2an/2024082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a nonlocal traffic flow model based on a scalar conservation law, where a stochastic velocity function is assumed. In addition to the modeling, theoretical properties of the stochastic nonlocal model are provided, also addressing the question of well-posedness. A detailed numerical analysis offers insights how the stochasticity affects the evolution of densities. Finally, numerical examples illustrate the mean behavior of solutions and the influence of parameters for a large number of realizations.
引用
收藏
页码:487 / 518
页数:32
相关论文
共 50 条
  • [21] Bifurcation phenomena in the optimal velocity model for traffic flow
    Igarashi, Y
    Itoh, K
    Nakanishi, K
    Ogura, K
    Yokokawa, K
    PHYSICAL REVIEW E, 2001, 64 (04):
  • [22] A NONLINEAR DISCRETE VELOCITY RELAXATION MODEL FOR TRAFFIC FLOW
    Borsche, R.
    Klar, A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (05) : 2891 - 2917
  • [23] Bifurcation analysis of a new stochastic traffic flow model
    Ai, WenHuan
    Tian, RuiHong
    Liu, DaWei
    Duan, WenShan
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (05) : 1803 - 1820
  • [24] Stochastic cellular-automaton model for traffic flow
    Kanai, Masahiro
    Nishinari, Katsuhiro
    Tokihiro, Tetsuji
    CELLULAR AUTOMATA, PROCEEDINGS, 2006, 4173 : 538 - 547
  • [25] A stochastic model of traffic flow: Gaussian approximation and estimation
    Jabari, Saif Eddin
    Liu, Henry X.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2013, 47 : 15 - 41
  • [26] ASYMPTOTIC COMPATIBILITY OF A CLASS OF NUMERICAL SCHEMES FOR A NONLOCAL TRAFFIC FLOW MODEL
    Huang, Kuang
    Du, Qiang
    SIAM JOURNAL ON COMPUTING, 2024, 62 (03) : 1119 - 1144
  • [27] ASYMPTOTIC COMPATIBILITY OF A CLASS OF NUMERICAL SCHEMES FOR A NONLOCAL TRAFFIC FLOW MODEL
    Huang, Kuang
    Du, Qiang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (03) : 1119 - 1144
  • [28] A nonlocal Lagrangian traffic flow model and the zero-filter limit
    Coclite, G. M.
    Karlsen, K. H.
    Risebro, N. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [29] City traffic simulation using cellular automata with stochastic velocity model
    Tamaki, T
    Kita, E
    PDPTA '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS 1-3, 2004, : 331 - 337
  • [30] Nonlinear Analysis of a Hybrid Optimal Velocity Model with Relative Velocity for Traffic Flow
    Liu, Tao
    Jia, Lei
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, AICI 2010, PT II, 2010, 6320 : 58 - 63