Curve shortening flow;
heat type equation;
maximum principle;
Bernstein technique;
HARNACK;
ENTROPY;
D O I:
10.1007/s10114-025-3057-1
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we study a heat type equation associated to the curve shortening flow in the plane. We show the solutions become infinitely many times differentiable for a short time. The method of proof is to use the maximum principle following the Bernstein technique.
机构:
Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, CanadaUniv Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Choi, Beomjun
Choi, Kyeongsu
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Korea Inst Adv Study, 85 Hoegiro, Seoul 02455, South KoreaUniv Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Choi, Kyeongsu
Daskalopoulos, Panagiota
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USAUniv Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
机构:
School of Mathematical Sciences, University of Science and Technology of ChinaSchool of Mathematical Sciences, University of Science and Technology of China
机构:
Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, GermanyAlbert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
Saez-Trumper, Mariel
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
2009,
634
: 143
-
168