On a Heat Type Equation Associated to the Curve Shortening Flow

被引:0
|
作者
Guo, Hongxin [1 ]
Wu, Xiuna [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
关键词
Curve shortening flow; heat type equation; maximum principle; Bernstein technique; HARNACK; ENTROPY;
D O I
10.1007/s10114-025-3057-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a heat type equation associated to the curve shortening flow in the plane. We show the solutions become infinitely many times differentiable for a short time. The method of proof is to use the maximum principle following the Bernstein technique.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] CONVERGENCE OF CURVE SHORTENING FLOW TO TRANSLATING SOLITON
    Choi, Beomjun
    Choi, Kyeongsu
    Daskalopoulos, Panagiota
    AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (04) : 1043 - 1077
  • [32] SOLITON SOLUTIONS TO THE CURVE SHORTENING FLOW ON THE SPHERE
    Santos dos Reis, Hiuri Fellipe
    Tenenblat, Keti
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (11) : 4955 - 4967
  • [33] Singularities of the Curve Shortening Flow in a Riemannian Manifold
    Shu Jing PAN
    Acta Mathematica Sinica,English Series, 2021, (11) : 1783 - 1793
  • [34] NONCONVEX ANCIENT SOLUTIONS TO CURVE SHORTENING FLOW
    Zhang, Yongzhe
    Olson, Connor
    Khan, Ilyas
    Angenent, Sigurd
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 8383 - 8409
  • [35] ERGODICITY OF STOCHASTIC CURVE SHORTENING FLOW IN THE PLANE
    Es-Sarhir, Abdelhadi
    von Renesse, Max-K.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (01) : 224 - 244
  • [36] Noncollapsing of Curve-Shortening Flow in Surfaces
    Edelen, Nick
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10143 - 10153
  • [37] Linearised euclidean shortening flow of curve geometry
    Salden, AH
    Romeny, BMT
    Viergever, MA
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1999, 34 (01) : 29 - 67
  • [38] Convex ancient solutions to curve shortening flow
    Bourni, Theodora
    Langford, Mat
    Tinaglia, Giuseppe
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (04)
  • [39] Relaxation of the flow of triods by curve shortening flow via the vector-valued parabolic Allen-Cahn equation
    Saez-Trumper, Mariel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 634 : 143 - 168
  • [40] CLASSIFICATION OF COMPACT ANCIENT SOLUTIONS TO THE CURVE SHORTENING FLOW
    Daskalopoulos, Panagiota
    Hamilton, Richard
    Sesum, Natasa
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 84 (03) : 455 - 464