Optimization strategies for flexible aqueous rechargeable sodium-ion batteries (ARSIBs)

被引:0
|
作者
Ren, Hehe [1 ]
Du, Xinzhan [1 ]
Liang, Jing [1 ]
Wu, Wei [1 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Lab Printable Funct Mat & Printed Elect, Wuhan 430072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
PRUSSIAN BLUE ANALOGS; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; ANODE MATERIAL; LOW-COST; ELECTROLYTE; CARBON; NATI2(PO4)(3); LITHIUM; BEHAVIOR;
D O I
10.1039/d5ta00276a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible aqueous rechargeable sodium-ion batteries (ARSIBs) have emerged as promising energy storage systems for flexible and wearable electronics due to their safety, eco-friendliness, flexibility, and low cost, especially for large-scale and high-throughput storage needs. However, the design of flexible ARSIBs with high performance and excellent mechanical performance still faces challenges including the structural stability of electrodes, narrow electrochemical stability window of electrolytes, various side reactions, and structural design. It is urgent to design and develop ARSIBs with superior electrochemical performance, excellent mechanical performance and broader application scenarios. While there have been numerous reviews on sodium-ion batteries, there is a scarcity of exclusive reviews focusing on flexible ARSIBs. This review systematically introduces the advancements in electrode materials, electrolytes, and their optimization strategies for flexible ARSIBs. In addition, the recent advancements of batteries are discussed in terms of design strategies, multifunctional applications, and damage resistance. To manufacture flexible ARSIBs with coordinated high energy density and multi-functionality, not only the active materials and electrolytes should be optimized, but also the structural design should be improved. This review aims to evaluate the challenges and future prospects, and offer valuable references for designing advanced and high-performance flexible ARSIBs.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Advanced Anode Materials for Rechargeable Sodium-Ion Batteries
    Qiao, Shuangyan
    Zhou, Qianwen
    Ma, Meng
    Liu, Hua Kun
    Dou, Shi Xue
    Chong, Shaokun
    ACS NANO, 2023, 17 (12) : 11220 - 11252
  • [22] Alluaudite polyanionic frameworks for rechargeable sodium-ion batteries
    Dwibedi, Debasmita
    Barpanda, Prabeer
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C899 - C899
  • [23] Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety
    Guo, Zhaowei
    Zhao, Yang
    Ding, Yuxue
    Dong, Xiaoli
    Chen, Long
    Cao, Jingyu
    Wang, Changchun
    Xia, Yongyao
    Peng, Huisheng
    Wang, Yonggang
    CHEM, 2017, 3 (02): : 348 - 362
  • [24] Research Progress on Flexible Sodium-ion Batteries
    Meng J.
    Zhou L.
    Zhong Y.
    Shen Y.
    Huang Y.
    Shen, Yue (shenyue1213@hust.edu.cn), 1600, Cailiao Daobaoshe/ Materials Review (34): : 01169 - 01176
  • [25] Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies
    Liu, Liyang
    Tian, Ye
    Abdussalam, Abubakar
    Gilani, Muhammad Rehan Hasan Shah
    Zhang, Wei
    Xu, Guobao
    MOLECULES, 2022, 27 (19):
  • [26] High energy density aqueous rechargeable sodium-ion/sulfur batteries in 'water in salt' electrolyte
    Kumar, Mukesh
    Nagaiah, Tharamani C.
    ENERGY STORAGE MATERIALS, 2022, 49 : 390 - 400
  • [27] Recent developments on aqueous sodium-ion batteries
    You, Yang
    Sang, Zhongsheng
    Liu, Jinping
    MATERIALS TECHNOLOGY, 2016, 31 (09) : 501 - 509
  • [28] Exploration of Advanced Electrode Materials for Rechargeable Sodium-Ion Batteries
    Sun, Yang
    Guo, Shaohua
    Zhou, Haoshen
    ADVANCED ENERGY MATERIALS, 2019, 9 (23)
  • [29] Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries
    Zhao, Qing
    Lu, Yong
    Chen, Jun
    ADVANCED ENERGY MATERIALS, 2017, 7 (08)
  • [30] A review of hard carbon anodes for rechargeable sodium-ion batteries
    Mu, Bao-yi
    Chi, Chun-lei
    Yang, Xin-hou
    Huangfu, Chao
    Qi, Bin
    Wang, Guan-wen
    Li, Zhi-yuan
    Song, Lei
    Wei, Tong
    Fan, Zhuang-jun
    NEW CARBON MATERIALS, 2024, 39 (05) : 796 - 823