N, S-coordinated Ni single-atom catalysts for efficient CO2 reduction in a zero-gap membrane electrode assembly electrolyzer

被引:0
|
作者
Jeon, Ye Eun [1 ,2 ]
Hong, Jumi [1 ,2 ]
An, Byeong-Seon [3 ]
Kim, Hyun You [4 ]
Kim, Chunjoong [4 ]
Lee, Jinwoo [5 ]
Lee, Han-Koo [6 ]
Park, Jinwon [2 ]
Ko, You Na [1 ]
Kim, Young Eun [1 ]
机构
[1] Korea Inst Energy Res, Climate Change Res Div, 152 Gajeong Ro, Daejeon 34129, South Korea
[2] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[3] Korea Inst Energy Res, Anal Ctr Energy Res, 152 Gajeong Ro, Daejeon 34129, South Korea
[4] Chungnam Natl Univ, Dept Mat Sci & Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[5] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[6] Pohang Accelerator Lab, 127 Jigokro, Pohang 37673, Gyeongbuk, South Korea
关键词
CO; 2; electroreduction; Electrocatalyst; Ni single-atom catalyst; Carbon monoxide; CARBON; SULFUR; SITES;
D O I
10.1016/j.mtener.2024.101706
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nickel single-atom catalysts (Ni SACs) hold great promise for the electrochemical CO2 reduction reaction (CO2RR) to CO. However, there remains a lack of synthetic strategies for achieving high CO2RR performance in a zero-gap electrolyzer. Herein, we demonstrate asymmetrically coordinated Ni SACs and membrane electrode assembly (MEA) structures to achieve outstanding CO2RR performance in a zero-gap electrolyzer. N, S-coordinated Ni SAC with the Ni-N3S1 structure (Ni-NSC-1) showed a higher Faradaic efficiency (FECO) and partial current density (jCO) of CO than N-coordinated Ni SACs (Ni-NCs). This was due to the coordination environment of Ni and increased N and S content in the carbon support. The FECO, jCO, and stability of the Ni-NSC-1 were further improved by modulating the MEA structure and operating temperature. As a result, a maximum FECO of 92.85% (at 2.1 V) and jCO of 286.54 mA/cm2 (at 2.3 V) were achieved using a Sustainion X37-50 GT membrane at 343 K. Moreover, the Ni-NSC-1 with Sustainion X3750 GT exhibited long-term stability for over 60 h, maintaining a high FECO of 95% at 100 mA/cm2. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] CO2 reduction on single-atom Ir catalysts with chemical functionalization
    Lin, Zheng-Zhe
    Li, Xi-Mei
    Chen, Xin-Wei
    Chen, Xi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (06) : 3733 - 3740
  • [32] Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
    Shang, Ziang
    Feng, Xueting
    Chen, Guanzhen
    Qin, Rong
    Han, Yunhu
    SMALL, 2023, 19 (48)
  • [33] Single-Atom Ni Sites with Asymmetric Coordination Structures for Efficient Photocatalytic CO2 Reduction
    Yan, Yingkui
    Wang, Ye
    Peng, Chenxiang
    Wang, Jing
    Wang, Xusheng
    Shi, Li
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2025, 13 (04): : 1628 - 1636
  • [34] Efficient electroreduction of CO2 to CO on silver single-atom catalysts: Activity enhancement through coordinated modulation of polyaniline
    Zhang, Teng
    Lu, Xingyu
    Qi, Wei
    Qin, Gaowu
    Li, Song
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 349
  • [35] Bimetallic Ni/Co single-atom catalysts guided by an energy descriptor for efficient CO2 electroreduction to syngas
    Qiu, Yuye
    Zheng, Tao
    Liu, Rui
    Liu, Jingjing
    Xue, Xiangdong
    Liu, Wengang
    Liu, Jian
    INORGANIC CHEMISTRY FRONTIERS, 2025,
  • [36] Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer
    Kim, Dongjin
    Choi, Woong
    Lee, Hee Won
    Lee, Si Young
    Choi, Yongjun
    Lee, Dong Ki
    Kim, Woong
    Na, Jonggeol
    Lee, Ung
    Hwang, Yun Jeong
    Won, Da Hye
    ACS ENERGY LETTERS, 2021, 6 (10) : 3488 - 3495
  • [37] Ni single-atom catalysts for highly efficient electrocatalytic CO2 reduction: hierarchical porous carbon as a support and plasma modification
    Ye, Qiulin
    Peng, Yaqi
    Wang, Dongdong
    Lv, Jiabao
    Yang, Yaoyue
    Liu, Yue
    Qi, Zhifu
    Zhu, Songqiang
    Ge, Chunliang
    Yang, Yan
    Wu, Angjian
    Lu, Shengyong
    SUSTAINABLE ENERGY & FUELS, 2023, 8 (01) : 150 - 158
  • [38] Low-Coordinated Single-Atom Catalysts Modulated by Metal Ionic Liquids for Efficient CO2 Electroreduction
    Yuan, Lei
    Zeng, Shaojuan
    Li, Guilin
    Wang, Yaofeng
    Peng, Kuilin
    Feng, Jiaqi
    Zhang, Xiangping
    Zhang, Suojiang
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (47)
  • [39] Microenvironment Modulation in Carbon-Supported Single-Atom Catalysts for Efficient Electrocatalytic CO2 Reduction
    Song, Pengyu
    Zhu, Pan
    Su, Xiaoran
    Hou, Mengyun
    Zhao, Di
    Zhang, Jiatao
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (20)
  • [40] Emerging single-atom catalysts for efficient electrocatalytic CO2 reduction and water splitting: Recent advances
    Wei, Kunling
    Pan, Keheng
    Qu, Guangfei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 86 : 316 - 342