Advanced machine learning artificial neural network classifier for lithology identification using Bayesian optimization (vol 12, 1473325, 2024)

被引:0
|
作者
Soulaimani, Saad [1 ,2 ]
Soulaimani, Ayoub [3 ]
Abdelrahman, Kamal [4 ]
Miftah, Abdelhalim [5 ]
Fnais, Mohammed S. [4 ]
Mondal, Biraj Kanti [6 ]
机构
[1] Mines Sch Rabat, Dept Mines, Resources Valorizat Environm & Sustainable Dev Res, Rabat, Morocco
[2] Mohammed VI Polytech Univ, Geol & Sustainable Min Inst, Ben Guerir, Morocco
[3] Ibn Tofail Univ, Fac Sci, Dept Earth Sci, Nat Resources & Sustainable Dev Lab, Kenitra, Morocco
[4] King Saud Univ, Coll Sci, Dept Geol & Geophys, Riyadh, Saudi Arabia
[5] Hassan First Univ Settat, Fac Sci & Tech, Lab Physicochem Proc & Mat, Settat, Morocco
[6] Netaji Subhas Open Univ, Dept Geog, Kolkata, India
关键词
geology; lithology identification; machine learning; neural network; Bayesian optimization;
D O I
10.3389/feart.2024.1544327
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Long-term stagnation monitoring using machine learning: comparison of artificial neural network model and convolution neural network model
    Lee, Jaiyeop
    Kim, Ilho
    WATER RESOURCES MANAGEMENT, 2022, 36 (07) : 2117 - 2130
  • [32] Long-term stagnation monitoring using machine learning: comparison of artificial neural network model and convolution neural network model
    Jaiyeop Lee
    Ilho Kim
    Water Resources Management, 2022, 36 : 2117 - 2130
  • [33] Particle Swarm Algorithm Setting using Deep Reinforcement Learning in the Artificial Neural Network Optimization Learning Process
    Fihri, Abdelkader Fassi
    Hajji, Tarik
    El Hassani, Ibtissam
    Masrour, Tawfik
    IAENG International Journal of Computer Science, 2024, 51 (08) : 1195 - 1208
  • [34] Deep Learning: Parameter Optimization Using Proposed Novel Hybrid Bees Bayesian Convolutional Neural Network
    Alamri, Nawaf Mohammad H.
    Packianather, Michael
    Bigot, Samuel
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [35] Comparative Analysis of Machine Learning Algorithms With Advanced Feature Extraction for ECG Signal Classification (vol 12, pg 57727, 2024)
    Subba, Tanuja
    Chingtham, Tejbanta
    IEEE ACCESS, 2024, 12 : 158809 - 158809
  • [36] Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier
    Swapnil K. Gundewar
    Prasad V. Kane
    International Journal of System Assurance Engineering and Management, 2022, 13 : 2876 - 2894
  • [37] Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier
    Gundewar, Swapnil K.
    Kane, Prasad, V
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2022, 13 (06) : 2876 - 2894
  • [38] Topological Optimization of Artificial Neural Networks to Estimate Mechanical Properties in Metal Forming Using Machine Learning
    Merayo, David
    Rodriguez-Prieto, Alvaro
    Maria Camacho, Ana
    METALS, 2021, 11 (08)
  • [39] Author Correction: Rapid identification of wood species using XRF and neural network machine learning
    Aaron N. Shugar
    B. Lee Drake
    Greg Kelley
    Scientific Reports, 12
  • [40] Plant species identification using color learning resources, shape, texture, through machine learning and artificial neural networks
    Bambil D.
    Pistori H.
    Bao F.
    Weber V.
    Alves F.M.
    Gonçalves E.G.
    de Alencar Figueiredo L.F.
    Abreu U.G.P.
    Arruda R.
    Bortolotto I.M.
    Environment Systems and Decisions, 2020, 40 (4) : 480 - 484