Approximation and Generalization Capacities of Parametrized Quantum Circuits for Functions in Sobolev Spaces

被引:0
|
作者
Manzano, Alberto [1 ,2 ]
Dechant, David [3 ,4 ]
Tura, Jordi [3 ,4 ]
Dunjko, Vedran [3 ,5 ]
机构
[1] Univ A Coruna, Dept Math, Campus de Elvina S-N, La Coruna, Spain
[2] Univ A Coruna, CITIC, Campus de Elvina S-N, La Coruna, Spain
[3] Appl Quantum Algorithms Leiden, Leiden, Netherlands
[4] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[5] Leiden Univ, LIACS, POB 9512, NL-2300 RA Leiden, Netherlands
来源
QUANTUM | 2025年 / 9卷
基金
荷兰研究理事会;
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parametrized quantum circuits (PQC) are quantum circuits which consist of both fixed and parametrized gates. In recent approaches to quantum machine learning (QML), PQCs are essentially ubiquitous and play the role analogous to classical neural networks. They are used to learn various types of data, with an underlying expectation that if the PQC is made sufficiently deep, and the data plentiful, the generalization error will vanish, and the model will capture the essential features of the distribution. While there exist results proving the approximability of square-integrable functions by PQCs under the L2 distance, the approximation for other function spaces and under other distances has been less explored. In this work we show that PQCs can approximate the space of continuous functions, p-integrable functions and the Hk Sobolev spaces under specific distances. Moreover, we develop generalization bounds that connect different function spaces and distances. These results provide a theoretical basis for different applications of PQCs, for example for solving differential equations. Furthermore, they provide us with new insight on the role of the data normalization in PQCs and of loss functions which better suit the specific needs of the users.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Expressive power of parametrized quantum circuits
    Du, Yuxuan
    Hsieh, Min-Hsiu
    Liu, Tongliang
    Tao, Dacheng
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [22] Approximation of capacities on metric spaces with Lipschitz capacities
    Hlushak, I. D.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2014, 6 (02) : 196 - 202
  • [23] WEIGHTED SOBOLEV SPACES, CAPACITIES AND EXCEPTIONAL SETS
    Tarasova, I. M.
    Shlyk, V. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1552 - 1570
  • [24] Tightness of Sobolev capacities in infinite dimensional spaces
    Pugachev, OV
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1999, 2 (03) : 427 - 440
  • [25] Evolutionary Quantum Architecture Search for Parametrized Quantum Circuits
    Ding, Li
    Spector, Lee
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 2190 - 2195
  • [26] Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere
    Le Gia, Q. T.
    Sloan, I. H.
    Wendland, H.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (03) : 401 - 412
  • [27] Approximation by regular functions in Sobolev spaces arising from doubly elliptic problems
    Patrizia Pucci
    Enzo Vitillaro
    Bollettino dell'Unione Matematica Italiana, 2020, 13 : 487 - 494
  • [28] Approximation by regular functions in Sobolev spaces arising from doubly elliptic problems
    Pucci, Patrizia
    Vitillaro, Enzo
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (04): : 487 - 494
  • [29] Approximation of Functions by Fourier - Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
    Magomed-Kasumov, M. G.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (03): : 295 - 304
  • [30] Generalization of Deformable Registration in Riemannian Sobolev Spaces
    Zikic, Darko
    Baust, Maximilian
    Kamen, Ali
    Navab, Nassir
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT II,, 2010, 6362 : 586 - +