SPM-FL: A Federated Learning Privacy-Protection Mechanism Based on Local Differential Privacy

被引:1
|
作者
Chen, Zhiyan [1 ]
Zheng, Hong [1 ]
机构
[1] Changchun Univ Technol, Sch Comp Sci & Engn, Changchun 130012, Peoples R China
关键词
federated learning; local differential privacy; privacy protection; deep learning;
D O I
10.3390/electronics13204091
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a widely applied distributed machine learning method that effectively protects client privacy by sharing and computing model parameters on the server side, thus avoiding the transfer of data to third parties. However, information such as model weights can still be analyzed or attacked, leading to potential privacy breaches. Traditional federated learning methods often disturb models by adding Gaussian or Laplacian noise, but under smaller privacy budgets, the large variance of the noise adversely affects model accuracy. To address this issue, this paper proposes a Symmetric Partition Mechanism (SPM), which probabilistically perturbs the sign of local model weight parameters before model aggregation. This mechanism satisfies strict & varepsilon;-differential privacy, while introducing a variance constraint mechanism that effectively reduces the impact of noise interference on model performance. Compared with traditional methods, SPM generates smaller variance under the same privacy budget, thereby improving model accuracy and being applicable to scenarios with varying numbers of clients. Through theoretical analysis and experimental validation on multiple datasets, this paper demonstrates the effectiveness and privacy-protection capabilities of the proposed mechanism.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] AWDP-FL: An Adaptive Differential Privacy Federated Learning Framework
    Chen, Zhiyan
    Zheng, Hong
    Liu, Gang
    ELECTRONICS, 2024, 13 (19)
  • [22] LDS-FL: Loss Differential Strategy Based Federated Learning for Privacy Preserving
    Wang, Taiyu
    Yang, Qinglin
    Zhu, Kaiming
    Wang, Junbo
    Su, Chunhua
    Sato, Kento
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1015 - 1030
  • [23] Effects of Quantization on Federated Learning with Local Differential Privacy
    Kim, Muah
    Gunlu, Onur
    Schaefer, Rafael F.
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 921 - 926
  • [24] Local Differential Privacy-Based Federated Learning for Internet of Things
    Zhao, Yang
    Zhao, Jun
    Yang, Mengmeng
    Wang, Teng
    Wang, Ning
    Lyu, Lingjuan
    Niyato, Dusit
    Lam, Kwok-Yan
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (11) : 8836 - 8853
  • [25] Trajectory data privacy protection based on differential privacy mechanism
    Gu, Ke
    Yang, Lihao
    Liu, Yongzhi
    Liao, Niandong
    2017 2ND INTERNATIONAL CONFERENCE ON RELIABILITY ENGINEERING (ICRE 2017), 2018, 351
  • [26] Continuous location privacy protection mechanism based on differential privacy
    Li H.
    Ren X.
    Wang J.
    Ma J.
    Tongxin Xuebao/Journal on Communications, 2021, 42 (08): : 164 - 175
  • [27] DLDP-FL: Dynamic local differential privacy federated learning method based on mesh network edge devices
    Yin, Kangning
    Wu, Bin
    Zhu, Rui
    Xiao, Lin
    Tan, Zhuofu
    He, Guofeng
    Wang, Zhiguo
    Yin, Guangqiang
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
  • [28] Asynchronous Federated Learning With Local Differential Privacy for Privacy-Enhanced Recommender Systems
    Zhao, Xiaopeng
    Bai, Xiao
    Sun, Guohao
    Yan, Zhe
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (07): : 7915 - 7929
  • [29] A novel local differential privacy federated learning under multi-privacy regimes
    Liu, Chun
    Tian, Youliang
    Tang, Jinchuan
    Dang, Shuping
    Chen, Gaojie
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [30] PRIVATE FL-GAN: DIFFERENTIAL PRIVACY SYNTHETIC DATA GENERATION BASED ON FEDERATED LEARNING
    Xin, Bangzhou
    Yang, Wei
    Geng, Yangyang
    Chen, Sheng
    Wang, Shaowei
    Huang, Liusheng
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2927 - 2931