Firn seismic anisotropy in the Northeast Greenland Ice Stream from ambient-noise surface waves

被引:0
|
作者
Pearce, Emma [1 ]
Zigone, Dimitri [1 ]
Hofstede, Coen [2 ]
Fichtner, Andreas [3 ]
Rimpot, Joachim [1 ]
Rasmussen, Sune Olander [4 ]
Freitag, Johannes [2 ]
Eisen, Olaf [1 ,2 ,5 ]
机构
[1] Univ Strasbourg, CNRS, Inst Terre & Environm Strasbourg ITES, UMR7063, Strasbourg, France
[2] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany
[3] Swiss Fed Inst Technol, Inst Geophys, Glaciol Dept, Zurich, Switzerland
[4] Niels Bohr Inst, Ctr Ice & Climate, Sect Phys Ice Climate & Earth, Copenhagen, Denmark
[5] Univ Bremen, Geosci Dept, D-28334 Bremen, Germany
来源
CRYOSPHERE | 2024年 / 18卷 / 10期
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
WEST ANTARCTICA; TOMOGRAPHY; VELOCITY; MICROSTRUCTURE; DENSIFICATION; RESOLUTION; SCALE; INVERSION; RAYLEIGH; MODEL;
D O I
10.5194/tc-18-4917-2024
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We analyse ambient-noise seismic data from 23 three-component seismic nodes to study firn velocity structure and seismic anisotropy near the EastGRIP camp along the Northeast Greenland Ice Stream (NEGIS). Using nine-component correlation tensors, we derive dispersion curves of Rayleigh and Love wave group velocities from 3 to 40 Hz. These velocity distributions exhibit anisotropy along and across the flow. To assess these variations, we invert dispersion curves for shear wave velocities (Vsh and Vsv) in the top 150 m of the NEGIS using a Markov chain Monte Carlo approach. The reconstructed 1-D shear velocity model reveals radial anisotropy in the firn, with Vsh 12 %-15 % greater than Vsv, peaking at the critical density (550 kg m-3). We combine density data from firn cores drilled in 2016 and 2018 to create a new density parameterisation for the NEGIS, serving as a reference for our results. We link seismic anisotropy in the NEGIS to effective and intrinsic causes. Seasonal densification, wind crusts, and melt layers induce effective anisotropy, leading to faster Vsh waves. Changes in firn recrystallisation cause intrinsic anisotropy, altering the Vsv / Vsh ratio. We observe a shallower firn-ice transition across the flow (approximate to 50 m) compared with along the flow (approximate to 60 m), suggesting increased firn compaction due to the predominant wind direction and increased deformation towards the shear margin. We demonstrate that short-duration (9 d minimum), passive, seismic deployments and noise-based analysis can determine seismic anisotropy in firn, and we reveal 2-D firn structure and variability.
引用
收藏
页码:4917 / 4932
页数:16
相关论文
共 50 条
  • [31] Crustal and Uppermost Mantle Azimuthal Seismic Anisotropy of Antarctica From Ambient Noise Tomography
    Zhou, Zhengyang
    Wiens, Douglas A.
    Nyblade, Andrew A.
    Aster, Richard C.
    Wilson, Terry
    Shen, Weisen
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2024, 129 (01)
  • [32] Estimation of azimuthal anisotropy in the NW Pacific from seismic ambient noise in seafloor records
    Takeo, Akiko
    Forsyth, Donald W.
    Weeraratne, Dayanthie S.
    Nishida, Kiwamu
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 199 (01) : 11 - 22
  • [33] Seismic Noise Interferometry and Distributed Acoustic Sensing (DAS): Inverting for the Firn Layer S-Velocity Structure on Rutford Ice Stream, Antarctica
    Zhou, Wen
    Butcher, Antony
    Brisbourne, Alex M.
    Kufner, Sofia-Katerina
    Kendall, J-Michael
    Stork, Anna L.
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2022, 127 (12)
  • [34] Surface wave tomography of China from ambient seismic noise correlation
    Zheng, Sihua
    Sun, Xinlei
    Song, Xiaodong
    Yang, Yingjie
    Ritzwoller, Michael H.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2008, 9
  • [35] On research of dispersion characteristics of multi-component surface waves from traffic-induced seismic ambient noise
    Liu, Honglei
    Wang, Limin
    Chen, Chao
    Bian, Aifei
    JOURNAL OF APPLIED GEOPHYSICS, 2023, 213
  • [36] Near-Surface Environmentally Forced Changes in the Ross Ice Shelf Observed With Ambient Seismic Noise
    Chaput, J.
    Aster, R. C.
    McGrath, D.
    Baker, M.
    Anthony, R. E.
    Gerstoft, P.
    Bromirski, P.
    Nyblade, A.
    Stephen, R. A.
    Wiens, D. A.
    Das, S. B.
    Stevens, L. A.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (20) : 11187 - 11196
  • [37] Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan Plateau from seismic ambient noise
    Wang Qiong
    Gao Yuan
    Shi Yu-Tao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2015, 58 (11): : 4068 - 4078
  • [38] Surface wave dispersion measurements from ambient seismic noise analysis in Italy
    Li, Hongyi
    Bernardi, Fabrizio
    Michelini, Alberto
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 180 (03) : 1242 - 1252
  • [39] Extracting Seismic Body and Rayleigh Waves from the Ambient Seismic Noise Using the rms-Stacking Method
    Shirzad, Taghi
    Shomali, Zaher-Hossein
    SEISMOLOGICAL RESEARCH LETTERS, 2015, 86 (01) : 173 - 180
  • [40] Anisotropy and crystalline fabric of Whillans Ice Stream (West Antarctica) inferred from multicomponent seismic data
    Picotti, Stefano
    Vuan, Alessandro
    Carcione, Jose M.
    Horgan, Huw J.
    Anandakrishnan, Sridhar
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2015, 120 (06) : 4237 - 4262