Statistical mechanics of the wave maps equation in dimension 1+1

被引:0
|
作者
Brzezniak, Zdzislaw [1 ]
Jendrej, Jacek [2 ,3 ]
机构
[1] Univ York, Dept Math, York YO105DD, England
[2] Univ Sorbonne Paris Nord, CNRS, UMR 7539, 99 Jean-Baptiste Clement, F-93430 Villetaneuse, France
[3] Univ Sorbonne Paris Nord, LAGA, 99 Jean Baptiste Clement, F-93430 Villetaneuse, France
关键词
Wave maps; Gibbs measure; Brownian motion; DATA CAUCHY-THEORY; INVARIANT MEASURE; SCHRODINGER-EQUATION; HEAT; VALUES;
D O I
10.1016/j.jfa.2024.110688
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study wave maps with values in S-d, defined on the future light cone {|x| <= t} subset of R1+1, with prescribed data at the boundary {|x| = t}. Based on the work of Keel and Tao, we prove that the problem is well-posed for locally absolutely continuous boundary data. We design a discrete version of the problem and prove that for every absolutely continuous boundary data, the sequence of solutions of the discretised problem converges to the corresponding continuous wave map as the mesh size tends to 0. Next, we consider the boundary data given by the S-d-valued Brownian motion. We prove that the sequence of solutions of the discretised problems has a subsequence that converges in law in the topology of locally uniform convergence. We argue that the resulting random field can be interpreted as the wavemap evolution corresponding to the initial data given by the (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
引用
收藏
页数:50
相关论文
共 50 条
  • [1] 1+1 wave maps into symmetric spaces
    Terng, CL
    Uhlenbeck, K
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2004, 12 (1-2) : 345 - 388
  • [2] STATISTICAL-MECHANICS OF KINKS IN 1+1 DIMENSIONS
    ALEXANDER, FJ
    HABIB, S
    PHYSICAL REVIEW LETTERS, 1993, 71 (07) : 955 - 958
  • [3] Level crossing analysis of the magnetohydrodynamic equation in (1+1)-dimension
    Masoudi, A. A.
    Farahani, S. Vasheghani
    Soltani, M. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (29): : 4917 - 4927
  • [4] Conservation laws of a nonlinear (1+1) wave equation
    Johnpillai, A. G.
    Kara, A. H.
    Mahomed, F. M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2237 - 2242
  • [5] Uniqueness of weak solutions of 1+1 dimensional wave maps
    Yi Zhou
    Mathematische Zeitschrift, 1999, 232 : 707 - 719
  • [6] Uniqueness of weak solutions of 1+1 dimensional wave maps
    Zhou, Y
    MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (04) : 707 - 719
  • [7] Exact traveling wave solutions of the perturbed Klein-Gordon equation with quadratic nonlinearity in (1+1)-dimension
    Zhang, Zai-yun
    TURKISH JOURNAL OF PHYSICS, 2013, 37 (02): : 259 - 267
  • [8] Analytical Solutions to the Dirac equation in 1+1 Space-Time Dimension
    Eleuch, H.
    Alhaidari, A. D.
    Bahlouli, H.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (01): : 149 - 151
  • [9] Mapping onto a SUSY quantum mechanics for the D=1+1 Dirac equation
    Bellini, M
    Deza, RR
    Montemayor, R
    REVISTA MEXICANA DE FISICA, 1996, 42 (02) : 209 - 215
  • [10] Wellposedness for a (1+1)-dimensional wave equation with quasilinear boundary condition
    Ohrem, Sebastian
    Reichel, Wolfgang
    Schnaubelt, Roland
    NONLINEARITY, 2023, 36 (12) : 6712 - 6746