Validation of the Finnish Diabetes Risk Score and development of a country-specific diabetes prediction model for Turkey

被引:0
|
作者
Ture, Neslisah [1 ]
Emecen, Ahmet Naci [2 ]
Unal, Belgin [2 ]
机构
[1] Ayvacik Dist Hlth Directorate, Canakkale, Turkiye
[2] Dokuz Eylul Univ, Fac Med, Dept Publ Hlth, Epidemiol Subsect, Izmir, Turkiye
关键词
diabetes mellitus; primary prevention; risk assessment; IMPAIRED GLUCOSE-TOLERANCE; LIFE-STYLE INTERVENTION; LONG-TERM OUTCOMES; FINDRISC QUESTIONNAIRE; TYPE-2; MELLITUS; POPULATION; PROGRAM;
D O I
10.1017/S1463423625000180
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Aims: Diabetes is a global health concern, and early identification of high-risk individuals is crucial for preventive interventions. Finnish Diabetes Risk Score (FINDRISC) is a widely accepted non-invasive tool that estimates the 10-year diabetes risk. This study aims to validate the FINDRISC in the Turkish population and develop a specific model using data from a nationwide cohort.Method: The study used data of 12249 participants from the T & uuml;rkiye Chronic Diseases and Risk Factors Survey. Data included sociodemographic variables, lifestyle factors, and anthropometric measurements. Multivariable logistic regression was employed using FINDRISC variables to predict incident type 2 diabetes mellitus (T2DM). Two country-specific models, one incorporating the waist-to-hip ratio (WHR model) and the other waist circumference (WC model), were developed. The least absolute shrinkage and selection operator (LASSO) algorithm was used for variable selection in the final models, and model discrimination indexes were compared.Results: The optimal FINDRISC cut-off was 8.5, with an area under the curve (AUC) of 0.76, demonstrating good predictive performance in identifying T2DM cases in the Turkish population. Both WHR and WC models showed similar predictive accuracy (AUC: 0.77). Marital status and education were associated with increased diabetes risk in both country-specific models.Conclusion: The study found that the FINDRISC tool is effective in predicting the risk of type 2 diabetes in the Turkish population. Models using WHR and WC showed similar predictive performance to FINDRISC. Sociodemographic factors may play a role in diabetes risk. These findings highlight the need to consider population-specific characteristics when evaluating diabetes risk.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Validation of the Finnish Type 2 Diabetes Risk Score (FINDRISC) with the OGTT in Health Care Practices in Europe
    Gabriel, Rafael
    Acosta, Tania
    Florez, Karen
    Anillo, Luis
    Navarro, Edgar
    Boukichou, Nisa
    Acosta-Reyes, Jorge
    Barengo, Noel C.
    Lindstrom, Jaana
    Tuomilehto, Jaakko O.
    Aschner, Pablo
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2021, 178
  • [42] Risk factors for hospitalization in youth with type 1 diabetes: Development and validation of a multivariable prediction model
    Mejia-Otero, Juan D.
    Adhikari, Soumya
    White, Perrin C.
    PEDIATRIC DIABETES, 2020, 21 (07) : 1268 - 1276
  • [43] DIabetes Severity SCOre (DISSCO) improves hospitalisation and mortality prediction: model development and validation in 139,626 people with type 2 diabetes
    Zghebi, S.
    Mamas, M.
    Ashcroft, D. M.
    Salisbury, C.
    Mallen, C.
    Chew-Graham, C.
    Reeves, D.
    Van Marwijk, H.
    Qureshi, N.
    Weng, S.
    Holt, T.
    Buchan, I.
    Peek, N.
    Rutter, M. K.
    Kontopantelis, E.
    DIABETOLOGIA, 2019, 62 : S528 - S529
  • [44] Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model
    Cahn, Avivit
    Shoshan, Avi
    Sagiv, Tal
    Yesharim, Rachel
    Goshen, Ran
    Shalev, Varda
    Raz, Itamar
    DIABETES-METABOLISM RESEARCH AND REVIEWS, 2020, 36 (02)
  • [45] EPIDEMIOLOGY OF OSTEOPOROTIC FRACTURE IN MOLDOVA AND DEVELOPMENT OF A COUNTRY-SPECIFIC FRAX MODEL
    Zakroyeva, A.
    Lesnyak, O.
    Cazac, V.
    Groppa, L.
    Russu, E.
    Chislari, L.
    Rotaru, L.
    Johansson, H.
    Harvey, C.
    Mccloskey, E.
    Lorentzon, M.
    Kanis, J.
    OSTEOPOROSIS INTERNATIONAL, 2020, 31 (SUPPL 1) : S253 - S253
  • [46] The Finnish Diabetes Risk Score Is Associated with Insulin Resistance and Progression towards Type 2 Diabetes
    Schwarz, Peter E. H.
    Li, Jiang
    Reimann, Manja
    Schutte, Alta E.
    Bergmann, Antje
    Hanefeld, Markolf
    Bornstein, Stefan R.
    Schulze, Jan
    Tuomilehto, Jaakko
    Lindstrom, Jaana
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2009, 94 (03): : 920 - 926
  • [47] Translation and performance of the Finnish Diabetes Risk Score for detecting undiagnosed diabetes and dysglycaemia in the Indonesian population
    Rokhman, M. Rifqi
    Arifin, Bustanul
    Zulkarnain, Zulkarnain
    Satibi, Satibi
    Perwitasari, Dyah Aryani
    Boersma, Cornelis
    Postma, Maarten J.
    van der Schans, Jurjen
    PLOS ONE, 2022, 17 (07):
  • [48] Skin autofluorescence improves the Finnish diabetes risk score in the detection of diabetes in a large population cohort
    Fokkens, B. T.
    van Waateringe, R. P.
    Mulder, D. J.
    Wolffenbuttel, B. H. R.
    Smit, A. J.
    DIABETOLOGIA, 2017, 60 : S161 - S162
  • [49] Epidemiology of hip fractures in Bulgaria: development of a country-specific FRAX model
    E. Kirilova
    H. Johansson
    N. Kirilov
    S. Vladeva
    T. Petranova
    Z. Kolarov
    E. Liu
    M. Lorentzon
    L. Vandenput
    N. C. Harvey
    E. McCloskey
    John A. Kanis
    Archives of Osteoporosis, 2020, 15
  • [50] The validity of the Finnish Diabetes Risk Score for the prediction of the incidence of coronary heart disease and stroke, and total mortality
    Sliventoinen, Kam
    Pankow, James
    Lindstrom, Jaana
    Jousilahti, Pekka
    Hu, Gang
    Tuomilehto, Jaakko
    EUROPEAN JOURNAL OF CARDIOVASCULAR PREVENTION & REHABILITATION, 2005, 12 (05): : 451 - 458