State of charge estimation of vehicle lithium-ion battery based on unscented Kalman filter

被引:0
|
作者
Chen, Junlin [1 ]
Wang, Chun [1 ]
Pu, Long [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Mech Engn, Zigong, Peoples R China
关键词
lithium-ion battery; state of charge; genetic algorithm; extended Kalman filter; unscented Kalman filter;
D O I
10.1109/YAC63405.2024.10598420
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate estimation of battery state of charge (SOC) is an important safety guarantee during battery charging and discharging. Aiming at the estimation of SOC of lithium-ion battery, the hybrid pulse power characteristic experiment (HPPC) and dynamic stress experiment (DST) are designed. Firstly, A straightforward Thevenin model was selected as an equivalent circuit model(ECM), and a genetic algorithm(GA) was utilised to ascertain the parameters of this model. Secondly, estimation of battery SOC is done using Extended Kalman Filter (EKF) and Unsigned Kalman Filter (UKF). Finally, the effectiveness of EKF and UKF algorithms is verified in dynamic stress test at varying temperatures. The results demonstrate that UKF algorithm exhibits higher accuracy than EKF algorithm, and its estimation error can be maintained at a level of 1.25%.
引用
收藏
页码:1934 / 1938
页数:5
相关论文
共 50 条
  • [21] State of Charge Estimation Based on Extened Kalman Filter Algorithm for Lithium-Ion Battery
    Kamal, E.
    El Hajjaji, A.
    Mabwe, A. Mpanda
    2015 23RD MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2015, : 734 - 739
  • [22] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520
  • [23] State of Charge Estimation for Lithium-Ion Battery in Electric Vehicle Based on Kalman Filter Considering Model Error
    Wang, Weihua
    Mu, Jiayi
    IEEE ACCESS, 2019, 7 : 29223 - 29235
  • [24] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [25] State of charge estimation of lithium battery based on Dual Adaptive Unscented Kalman Filter
    Zhang, Peng
    Xie, Changjun
    Dong, Shibao
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 2174 - 2179
  • [26] A State of Charge Estimation Method Based on Adaptive Unscented Kalman Filter for Lithium-ion Parallel-connected Battery System
    Peng, Simin
    Chen, Chong
    Wang, Zhibing
    Yang, Xiaodong
    Xu, Zhen
    JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018, 2018,
  • [27] Robust lithium-ion state-of-charge and battery parameters joint estimation based on an enhanced adaptive unscented Kalman filter
    Hou, Jie
    Liu, Jiawei
    Chen, Fengwei
    Li, Penghua
    Zhang, Tao
    Jiang, Jincheng
    Chen, Xiaolei
    ENERGY, 2023, 271
  • [28] An Adaptive State of Charge Estimation Method of Lithium-ion Battery Based on Residual Constraint Fading Factor Unscented Kalman Filter
    Feng, Juqiang
    Cai, Feng
    Yang, Jing
    Wang, Shunli
    Huang, Kaifeng
    IEEE ACCESS, 2022, 10 : 44549 - 44563
  • [29] Modeling and state of charge estimation of a lithium ion battery using unscented Kalman filter in a nanosatellite
    Aung, Htet
    Low, Kay Soon
    Goh, Shu Ting
    Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014, 2014, : 1422 - 1426
  • [30] Modeling and State of Charge Estimation of a Lithium Ion Battery Using Unscented Kalman Filter in a Nanosatellite
    Aung, Htet
    Low, Kay Soon
    Goh, Shu Ting
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1422 - 1426