Gabor System based on the unitary dual of the Heisenberg group

被引:0
|
作者
Das, Santi R. [2 ]
Ramakrishnan, Radha [1 ]
机构
[1] Indian Inst Technol, Dept Math, Madras, India
[2] OCC Homi Bhabha Natl Inst, NISER Bhubaneswar, Sch Math Sci, Jatni 752050, India
关键词
Bessel sequence; frames; Gabor system; Heisenberg group; Hilbert-Schmidt operator; orthonormal system; Parseval frame; Riesz basis; unitary representation; Weyl transform; SHIFT-INVARIANT SPACES; WAVELET SYSTEM; FRAMES;
D O I
10.1515/forum-2024-0385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Gabor system based on the unitary dual of the Heisenberg group Hn is introduced and a sufficient condition is obtained for the Gabor system to be a Bessel sequence for L 2 (& Ropf;& lowast; , B2; d kappa) using the Schr & ouml;dinger representation of Hn , where B2 denotes the class of Hilbert-Schmidt operators on L 2 (& Ropf;n ) and d kappa denotes the Haar measure on & Ropf;& lowast; . Further, a necessary and sufficient condition is provided for the Gabor system to be an orthonormal system, a Parseval frame sequence, a frame sequence and a Riesz sequence.
引用
收藏
页数:21
相关论文
共 50 条