On the Extrapolation of Generative Adversarial Networks for Downscaling Precipitation Extremes in Warmer Climates

被引:1
|
作者
Rampal, Neelesh [1 ,2 ,3 ]
Gibson, Peter B. [4 ]
Sherwood, Steven [2 ,3 ]
Abramowitz, Gab [2 ,3 ]
机构
[1] Natl Inst Water & Atmospher Res, Auckland, New Zealand
[2] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[3] Univ New South Wales, ARC Ctr Excellence Climate Extremes, Sydney, NSW, Australia
[4] Natl Inst Water & Atmospher Res, Wellington, New Zealand
基金
澳大利亚研究理事会;
关键词
generative adversarial networks; climate downscaling; deep learning; extrapolation; statistical downscaling; climate projections; FUTURE CHANGES; MODELS;
D O I
10.1029/2024GL112492
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
While deep-learning downscaling algorithms can generate fine-scale climate projections cost-effectively, it is unclear how effectively they extrapolate to unobserved climates. We assess the extrapolation capabilities of a deterministic Convolutional Neural Network baseline and a Generative Adversarial Network (GAN) built with this baseline, trained to predict daily precipitation simulated by a Regional Climate Model (RCM) over New Zealand. Both approaches emulate future changes in annual mean precipitation well, when trained on historical data, though training on a future climate improves performance. For extreme precipitation (99.5th percentile), RCM simulations predict a robust end-of-century increase with future warming (similar to 5.8%/degrees $\mathit{{}<^>{\circ}}$C on average from five simulations). When trained on a future climate, GANs capture 97% of the warming-driven increase in extreme precipitation compared to 65% in a deterministic baseline. Even GANs trained historically capture 77% of this increase. Overall, GANs offer better generalization for downscaling extremes, which is important in applications relying on historical data.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Wasserstein Generative Adversarial Networks
    Arjovsky, Martin
    Chintala, Soumith
    Bottou, Leon
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [22] Coevolution of Generative Adversarial Networks
    Costa, Victor
    Lourenco, Nuno
    Machado, Penousal
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2019, 2019, 11454 : 473 - 487
  • [23] A survey of generative adversarial networks
    Zhu, Kongtao
    Liu, Xiwei
    Yang, Hongxue
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2768 - 2773
  • [24] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [25] Stacked Generative Adversarial Networks
    Huang, Xun
    Li, Yixuan
    Poursaeed, Omid
    Hopcroft, John
    Belongie, Serge
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1866 - 1875
  • [26] Graphical Generative Adversarial Networks
    Li, Chongxuan
    Welling, Max
    Zhu, Jun
    Zhang, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [27] Triangle Generative Adversarial Networks
    Gan, Zhe
    Chen, Liqun
    Wang, Weiyao
    Pu, Yunchen
    Zhang, Yizhe
    Liu, Hao
    Li, Chunyuan
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [28] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [29] A Review on Generative Adversarial Networks
    Yuan, Yiqin
    Guo, Yuhao
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 392 - 401
  • [30] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173