The optimised model of predicting protein-metal ion ligand binding residues

被引:0
|
作者
Yang, Caiyun [1 ]
Hu, Xiuzhen [1 ]
Feng, Zhenxing [1 ]
Hao, Sixi [1 ]
Zhang, Gaimei [2 ]
Chen, Shaohua [1 ]
Guo, Guodong [3 ]
机构
[1] Inner Mongolia Univ Technol, Coll Sci, Hohhot, Peoples R China
[2] Hohhot First Hosp, Hohhot, Peoples R China
[3] Baotou Med Coll, Sch Comp Sci & Technol, Baotou, Peoples R China
关键词
biocomputers; bioinformatics; DISORDER; IRON;
D O I
10.1049/syb2.70001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Metal ions are significant ligands that bind to proteins and play crucial roles in cell metabolism, material transport, and signal transduction. Predicting the protein-metal ion ligand binding residues (PMILBRs) accurately is a challenging task in theoretical calculations. In this study, the authors employed fused amino acids and their derived information as feature parameters to predict PMILBRs using three classical machine learning algorithms, yielding favourable prediction results. Subsequently, deep learning algorithm was incorporated in the prediction, resulting in improved results for the sets of Ca2+ and Mg2+ compared to previous studies. The validation matrix provided the optimal prediction model for each ionic ligand binding residue, exhibiting the capability of effectively predicting the binding sites of metal ion ligands for real protein chains.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Predicting protein-ligand binding affinities: a low scoring game?
    Marsden, PM
    Puvanendrampillai, D
    Mitchell, JBO
    Glen, RC
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2004, 2 (22) : 3267 - 3273
  • [42] Charge-dependent modulation of specific and nonspecific protein-metal ion interactions in nanoelectrospray ionization mass spectrometry
    Zheng, Shihui
    Yuan, Siming
    Hou, Zhuanghao
    Li, Gongyu
    Chen, Yuting
    Pan, Yang
    Liu, Yangzhong
    Huang, Guangming
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2019, 33 (19) : 1502 - 1511
  • [43] Predicting Protein-Ligand Binding Site with Support Vector Machine
    Wong, Ginny Y.
    Leung, Frank H.
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [44] Protein embeddings and deep learning predict binding residues for various ligand classes
    Maria Littmann
    Michael Heinzinger
    Christian Dallago
    Konstantin Weissenow
    Burkhard Rost
    Scientific Reports, 11
  • [45] Predicting Protein Ligand Binding Sites with Structure Alignment Method on Hadoop
    Liu, Guangzhong
    Liu, Min
    Chen, Daozheng
    Chen, Lei
    Zhu, Jiali
    Zhou, Bo
    Gao, Jun
    CURRENT PROTEOMICS, 2016, 13 (02) : 113 - 121
  • [46] Predicting Protein Homodimer Allosteric Ligand Binding through Multiscale Dynamics
    Rogers, Tom
    Townsend, Philip
    Burnell, David
    McLeish, Tom
    Wilson, Mark
    Pohl, Emkhe
    Cann, Martin
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 227A - 227A
  • [47] Protein embeddings and deep learning predict binding residues for various ligand classes
    Littmann, Maria
    Heinzinger, Michael
    Dallago, Christian
    Weissenow, Konstantin
    Rost, Burkhard
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [48] Predicting Protein-Ligand Binding Specificity Based on Ensemble Clustering
    Guo, Ziyi
    Chen, Brian Y.
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 1239 - 1245
  • [49] Dynamic Protein-Metal Ion Networks: A Unique Approach to Injectable and Self-Healable Metal Sulfide/Protein Hybrid Hydrogels with High Photothermal Efficiency
    Wang, Liqiang
    Liang, Kaixin
    Jiang, Xingxing
    Yang, Minghui
    Liu, You-Nian
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (25) : 6557 - 6563
  • [50] Total external reflection X-ray fluorescence analysis of protein-metal ion interactions in biological systems
    Novikova, N. N.
    Kovalchuk, M. V.
    Yur'eva, E. A.
    Konovalov, O. V.
    Rogachev, A. V.
    Stepina, N. D.
    Sukhorukov, V. S.
    Tsaregorodtsev, A. D.
    Chukhrai, E. S.
    Yakunin, S. N.
    CRYSTALLOGRAPHY REPORTS, 2012, 57 (05) : 648 - 655