An explainable few-shot learning model for the directed evolution of antimicrobial peptides

被引:0
|
作者
Gao, Qiandi [1 ]
Ge, Liangjun [1 ]
Wang, Yihan [1 ]
Zhu, Yanran [1 ]
Liu, Yu [2 ]
Zhang, Heqian [1 ]
Huang, Jiaquan [1 ]
Qin, Zhiwei [1 ]
机构
[1] Beijing Normal Univ, Adv Inst Nat Sci, Ctr Biol Sci & Technol, Zhuhai 519087, Guangdong, Peoples R China
[2] Beijing Normal Univ, Adv Inst Nat Sci, Int Acad Ctr Complex Syst, Zhuhai 519087, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Antibacterial peptides; Protein language model; Lipopolysaccharide-binding domain; Molecular dynamics simulations; Directed evolution; ANTILIPOPOLYSACCHARIDE FACTOR; PENAEUS-MONODON; LANGUAGE; PROTEIN; AUTOMATION; ALFPM3;
D O I
10.1016/j.ijbiomac.2024.138272
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Due to the persistent threat of antibiotic resistance posed by Gram-negative pathogens, the discovery of new antimicrobial agents is of critical importance. In this study, we employed deep learning-guided directed evolution to explore the chemical space of antimicrobial peptides (AMPs), which present promising alternatives to traditional small-molecule antibiotics. Utilizing a fine-tuned protein language model tailored for small dataset learning, we achieved structural modifications of the lipopolysaccharide-binding domain (LBD) derived from Marsupenaeus japonicus, a prawn species of considerable value in aquaculture and commercial fisheries. The engineered LBDs demonstrated exceptional activity against a range of Gram-negative pathogens. Drawing inspiration from evolutionary principles, we elucidated the bactericidal mechanism through molecular dynamics simulations and mapped the directed evolution pathways using a ladderpath framework. This work highlights the efficacy of explainable few-shot learning in the rational design of AMPs through directed evolution.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Few-shot learning for ear recognition
    Zhang, Jie
    Yu, Wen
    Yang, Xudong
    Deng, Fang
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, : 50 - 54
  • [32] Few-Shot Learning with Novelty Detection
    Bjerge, Kim
    Bodesheim, Paul
    Karstoft, Henrik
    DEEP LEARNING THEORY AND APPLICATIONS, PT I, DELTA 2024, 2024, 2171 : 340 - 363
  • [33] Prototype Completion for Few-Shot Learning
    Zhang, Baoquan
    Li, Xutao
    Ye, Yunming
    Feng, Shanshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12250 - 12268
  • [34] Few-Shot Learning With a Strong Teacher
    Ye, Han-Jia
    Ming, Lu
    Zhan, De-Chuan
    Chao, Wei-Lun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1425 - 1440
  • [35] Local Propagation for Few-Shot Learning
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10457 - 10464
  • [36] Few-Shot Learning With Class Imbalance
    Ochal M.
    Patacchiola M.
    Vazquez J.
    Storkey A.
    Wang S.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (05): : 1348 - 1358
  • [37] Explore pretraining for few-shot learning
    Yan Li
    Jinjie Huang
    Multimedia Tools and Applications, 2024, 83 : 4691 - 4702
  • [38] Few-Shot Learning for Defence and Security
    Robinson, Todd
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS II, 2020, 11413
  • [39] Few-Shot Learning for Image Denoising
    Jiang, Bo
    Lu, Yao
    Zhang, Bob
    Lu, Guangming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4741 - 4753
  • [40] Few-shot Learning with Noisy Labels
    Liang, Kevin J.
    Rangrej, Samrudhdhi B.
    Petrovic, Vladan
    Hassner, Tal
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9079 - 9088