Effects of Nitrogen Addition and Precipitation Reduction on Microbial and Soil Nutrient Imbalances in a Temperate Forest Ecosystem

被引:0
|
作者
Xiao, Yutong [1 ]
Dong, Xiongde [1 ]
Chen, Zhijie [2 ]
Han, Shijie [1 ,3 ]
机构
[1] Henan Univ, Sch Life Sci, Kaifeng 475004, Peoples R China
[2] Fujian Normal Univ, Sch Geog Sci, Fuzhou 350007, Peoples R China
[3] Qufu Normal Univ, Sch Life Sci, 57 Jingxuan West Rd, Qufu 273165, Peoples R China
来源
FORESTS | 2025年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
stoichiometric imbalance; nitrogen deposition; precipitation reduction; nutrient resorption; soil extracellular enzymes; COMMUNITY DYNAMICS; ENZYME-ACTIVITY; PLANT; STOICHIOMETRY; DROUGHT; RESPONSES; BIOMASS; CARBON; DECOMPOSITION; LIMITATION;
D O I
10.3390/f16010004
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Global climate change, characterized by nitrogen (N) deposition and precipitation reduction, can disrupt soil microbial stoichiometry and soil nutrient availability, subsequently affecting soil nutrient cycles. However, the effects of N deposition and precipitation reduction on microbial stoichiometry and the soil nutrient status in temperate forests remain poorly understood. This study addresses this gap through a 10-year field trial conducted in a Korean pine mixed forest in northeastern China where three treatments were applied: precipitation reduction (PREC), nitrogen addition (N50), and a combination of nitrogen addition with precipitation reduction (PREC-N50). The results showed that N50 and PREC significantly increased carbon-to-phosphorus (C/P) and nitrogen-to-phosphorus (N/P) imbalances, thereby exacerbating microbial P limitation, while PREC-N50 did not alter the nutrient imbalances. PREC decreased soil water availability, impairing microbial nutrient acquisition. Both N50 and PREC influenced soil enzyme stoichiometry, leading to increasing the ACP production. The results of redundancy analysis indicated that microbial nutrient status, enzymatic activity, and composition contributed to the variations in nutrient imbalances, suggesting the adaption of microorganisms to P limitation. These results highlight that N addition and precipitation reduction enhanced microbial P limitation, boosting the shifts of microbial elemental composition, enzyme production, and community composition, and subsequently impacting on forest nutrient cycles.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Contrasting effects of nitrogen deposition and increased precipitation on soil nematode communities in a temperate forest
    Liu, Tao
    Mao, Peng
    Shi, Leilei
    Wang, Zuyan
    Wang, Xiaoli
    He, Xinxing
    Tao, Libin
    Liu, Zhanfeng
    Zhou, Lixia
    Shao, Yuanhu
    Fu, Shenglei
    SOIL BIOLOGY & BIOCHEMISTRY, 2020, 148 (148):
  • [22] Long-term nitrogen addition and reduced precipitation restructure soil fungal community in a temperate forest
    Yan, Guoyong
    Wang, Qinggui
    Zhang, Junhui
    Liu, Guangcheng
    Wang, Lei
    Huang, Binbin
    Wang, Honglin
    Xing, Yajuan
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2021, 36 (2-3) : 105 - 116
  • [23] Chronic enhanced nitrogen deposition and elevated precipitation jointly benefit soil microbial community in a temperate forest
    Yang, An
    Song, Bo
    Zhang, Weixin
    Zhang, Tianning
    Li, Xiaowei
    Wang, Hongtao
    Zhu, Dong
    Zhao, Jie
    Fu, Shenglei
    SOIL BIOLOGY & BIOCHEMISTRY, 2024, 193
  • [24] Effects of canopy nitrogen addition on soil fauna and litter decomposition rate in a temperate forest and a subtropical forest
    Liu, Shengjie
    Behm, Jocelyn E.
    Wan, Shiqiang
    Yan, Junhua
    Ye, Qing
    Zhang, Wei
    Yang, Xiaodong
    Fu, Shenglei
    GEODERMA, 2021, 382
  • [25] Canopy nitrogen deposition enhances soil ecosystem multifunctionality in a temperate forest
    Yang, An
    Zhu, Dong
    Zhang, Weixin
    Shao, Yuanhu
    Shi, Yu
    Liu, Xu
    Lu, Ziluo
    Zhu, Yong-Guan
    Wang, Hongtao
    Fu, Shenglei
    GLOBAL CHANGE BIOLOGY, 2024, 30 (03)
  • [26] Variations of the effects of reduced precipitation and N addition on microbial diversity among different seasons in a temperate forest
    Yan, Guoyong
    Han, Shijie
    Wang, Qinggui
    Wang, Xiaochun
    Hu, Chunyi
    Xing, Yajuan
    APPLIED SOIL ECOLOGY, 2021, 166
  • [27] The influence of precipitation timing and amount on soil microbial community in a temperate desert ecosystem
    Xiao, Yao
    Bao, Fang
    Xu, Xiaotian
    Yu, Ke
    Wu, Bo
    Gao, Ying
    Zhang, Junzhong
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [28] Soil Nematode Responses to Increases in Nitrogen Deposition and Precipitation in a Temperate Forest
    Sun, Xiaoming
    Zhang, Xiaoke
    Zhang, Shixiu
    Dai, Guanhua
    Han, Shijie
    Liang, Wenju
    PLOS ONE, 2013, 8 (12):
  • [29] Increased precipitation alters the effects of nitrogen deposition on soil bacterial and fungal communities in a temperate forest
    Liu, Yang
    Wang, Hang
    Tan, Xiangping
    Fu, Shenglei
    Liu, Dan
    Shen, Weijun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 916
  • [30] Effects of burning and nitrogen addition on foliar stoichiometry and nutrient resorption in a subtropical-temperate ecotonal forest
    Hu, Mengjun
    Wan, Shiqiang
    FOREST ECOLOGY AND MANAGEMENT, 2024, 572