A Chip-Scale Silicon Cavity Optomechanical Accelerometer With Extended Frequency Range

被引:0
|
作者
Li, Zhe [1 ]
Li, Xinwei [2 ]
Chen, Dingwei [2 ]
Zhang, Senyu [2 ]
Xian, Chengwei [2 ]
Kuang, Pengju [2 ]
Wang, Yifan [1 ]
Chen, Kai [1 ]
Qiu, Gen [1 ]
Deng, Guangwei [3 ]
Huang, Yongjun [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sichuan Prov Engn Res Ctr Commun Technol Intellige, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Cavity optomechanical sensor; extended frequency range; silicon on insulator (SOI); vibration detection; DESIGN; SENSOR;
D O I
10.1109/JSEN.2024.3443309
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The integration of modern accelerometers and gyroscopes has led to the development of inertial measurement units (IMUs), which have evolved into inertial navigation systems (INS) and, more recently, into positioning, navigation, and timing (PNT) systems. Furthermore, multisensor on-chip technology is advancing, delivering wider bandwidths, heightened precision, and further miniaturization. Optomechanical sensor research reveals significant advantages over conventional accelerometers, particularly in the achievement of low-noise resonant optomechanical transduction, which approaches the thermodynamic limit. In this study, we further present a differential-type optomechanical accelerometer based on the 2-D slot-type silicon photonic crystal (PhC) microcavity from the low-frequency region to near the fundamental resonance frequency. It is demonstrated that in the parametric optomechanical oscillation mode, the silicon-on-insulator (SOI) sensor has a measured noise-equivalent acceleration (NEA) of similar to 20 mu g/Hz(1/2), nearing the thermal noise limit of similar to 14 mu g/Hz(1/2). The sensor, designed for broadband vibration measurements, is engineered with a theoretical bandwidth of similar to 70 kHz but can only be measured up to 30 kHz due to instrumentation limitations. This device is suitable for various applications such as vibration detection, inertial navigation, acoustic analysis, or optical sensing collaboration.
引用
收藏
页码:31849 / 31859
页数:11
相关论文
共 50 条
  • [21] Cavity-Enhanced Vernier Spectroscopy with a Chip-Scale Mid-Infrared Frequency Comb
    Sterczewski, Lukasz A.
    Chen, Tzu-Ling
    Ober, Douglas C.
    Markus, Charles R.
    Canedy, Chadwick L.
    Vurgaftman, Igor
    Frez, Clifford
    Meyer, Jerry R.
    Okumura, Mitchio
    Bagheri, Mahmood
    ACS PHOTONICS, 2022, 9 (03) : 994 - 1001
  • [22] Silicon nanophotonics integration for chip-scale optical communication
    Grieco, A.
    Tan, D. T. H.
    Ikeda, K.
    Nezhad, M. P.
    Puckett, M.
    Fainman, Y.
    SMART PHOTONIC AND OPTOELECTRONIC INTEGRATED CIRCUITS XVI, 2014, 8989
  • [23] A chip-scale integrated cavity-electro-optomechanics platform
    Winger, M.
    Blasius, T. D.
    Alegre, T. P. Mayer
    Safavi-Naeini, A. H.
    Meenehan, S.
    Cohen, J.
    Stobbe, S.
    Painter, O.
    OPTICS EXPRESS, 2011, 19 (25): : 24905 - 24921
  • [24] A chip-scale microwave repetition rate frequency comb
    Del'Haye, P.
    Arcizet, O.
    Schliesser, A.
    Holzwarth, R.
    Kippenberg, T. J.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES VI, 2009, 7222
  • [25] Chip-Scale Frequency Comb Sources for Terabit Communications
    Koos, Christian
    Kippenberg, Tobias
    Dalton, Larry
    Freude, Wolfgang
    Pfeifle, Joerg
    Herr, Tobias
    Weimann, Claudius
    Palmer, Robert
    Lauermann, Matthias
    Elder, Delwin
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [26] Advances in chip-scale atomic frequency references at NIST
    Knappe, S.
    Shah, V.
    Brannon, A.
    Gerginov, V.
    Robinson, H. G.
    Popovic, Z.
    Hollberg, L.
    Kitching, J.
    TIME AND FREQUENCY METROLOGY, 2007, 6673
  • [27] A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits
    Huang, Yongjun
    Flores, Jaime Gonzalo Flor
    Li, Ying
    Wang, Wenting
    Wang, Di
    Goldberg, Noam
    Zheng, Jiangjun
    Yu, Mingbin
    Lu, Ming
    Kutzer, Michael
    Rogers, Daniel
    Kwong, Dim-Lee
    Churchill, Layne
    Wong, Chee Wei
    LASER & PHOTONICS REVIEWS, 2020, 14 (05)
  • [28] A new chip-scale magnetic field sensor based on oscillation mode optomechanical detection
    Li, Zhe
    Kuang, Pengju
    Xian, Chengwei
    Wang, Yifan
    Chen, Kai
    Huang, Yongjun
    2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024, 2024,
  • [29] Chip-scale optical vortex lattice generator on a silicon platform
    Du, Jing
    Wang, Jian
    OPTICS LETTERS, 2017, 42 (23) : 5054 - 5057
  • [30] Chip-Scale Silicon Ring Resonators for Cryogenic Temperature Sensing
    You, Minmin
    Lin, Zude
    Li, Xiuyan
    Liu, Jingquan
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (20) : 5768 - 5773